42 resultados para Advanced Oxidation Processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.

The formation of advanced glycation end products (AGEs) is a natural function of ageing but accumulation of these adducts also represents a key pathophysiological event in a range of important human diseases. AGEs act as mediators of neurodegeneration, induce irreversible changes in the extracellular matrix, vascular dysfunction and pro-inflammatory signalling. Since many cells and tissues of the eye are profoundly influenced by such processes, it is fitting that advanced glycation is now receiving considerable attention as a possible pathogenic factor in visual disorders.

This review presents the current evidence for a pathogenic role for AGEs and activation of the receptor for AGEs (RAGE) in initiation and progression of retinal disease. It draws upon the clinical and experimental literature and highlights the opportunities for further research that would definitively establish these adducts as important instigators of retinal disease. The therapeutic potential for novel agents that can ameliorate AGE formation of attenuate RAGE signalling in the retina is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: Referred to as CCN, the family of growth factors consisting of cystein-rich protein 61 (CYR61, also known as CCN1), connective tissue growth factor (CTGF, also known as CCN2), nephroblastoma overexpressed gene (NOV, also known as CCN3) and WNT1-inducible signalling pathway proteins 1, 2 and 3 (WISP1, -2 and -3; also known as CCN4, -5 and -6) affects cellular growth, differentiation, adhesion and locomotion in wound repair, fibrotic disorders, inflammation and angiogenesis. AGEs formed in the diabetic milieu affect the same processes, leading to diabetic complications including diabetic retinopathy. We hypothesised that pathological effects of AGEs in the diabetic retina are a consequence of AGE-induced alterations in CCN family expression.

Materials and methods: CCN gene expression levels were studied at the mRNA and protein level in retinas of control and diabetic rats using real-time quantitative PCR, western blotting and immunohistochemistry at 6 and 12 weeks of streptozotocin-induced diabetes in the presence or absence of aminoguanidine, an AGE inhibitor. In addition, C57BL/6 mice were repeatedly injected with exogenously formed AGE to establish whether AGE modulate retinal CCN growth factors in vivo.

Results: After 6 weeks of diabetes, Cyr61 expression levels were increased more than threefold. At 12 weeks of diabetes, Ctgf expression levels were increased twofold. Treatment with aminoguanidine inhibited Cyr61 and Ctgf expression in diabetic rats, with reductions of 31 and 36%, respectively, compared with untreated animals. Western blotting showed a twofold increase in CTGF production, which was prevented by aminoguanidine treatment. In mice infused with exogenous AGE, Cyr61 expression increased fourfold and Ctgf expression increased twofold in the retina.

Conclusions/interpolation: CTGF and CYR61 are downstream effectors of AGE in the diabetic retina, implicating them as possible targets for future intervention strategies against the development of diabetic retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of catechol and dopamine has been studied at a platinum micro-electrode (10 pm diameter) in two room temperature ionic liquids (RTILs): 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and 1-Butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim][BE4]). For catechol in [C(2)mim][NTf2], an electrochemically quasi-reversible oxidation peak was observed at 1.1 V vs. Pt with a back peak at 0.4 V vs. Pt. This is assigned to the two-electron oxidation of catechol to doubly protonated o-benzoquinone. Double-step chronoamperometry gave a diffusion coefficient for the catechol and the oxidised species which is 3.8 x 10(-11) m(2) s(-1) for both. For catechol in [C(4)mim][BF4], a two-electron oxidation wave was observed at 1.0 V vs. Pt with no back peak. Another peak at less positive potential was also observed at 0.6 V vs. Pt in [C(4)mim][BF4] but not in [C(2)mim][NTf2] which is assigned to the adsorption of electrochemically formed neutral o-benzoquinone on the platinum electrode. The oxidised protonated o-benzoquinone is suggested to be deprotonated by the [BF4](-) anion, but not by the [NTf2](-) anion: hence adsorption of the neutral species at the platinum electrode, not the charged species. For dopamine in both RTILs, two chemically irreversible oxidation peaks were observed at 0.75 V and 1.1 V vs. Pt, and assigned to the oxidation of dopamine to the corresponding semi-quinone and the quinone. Potential-step chronoamperometry was carried out on the oxidation waves of dopamine in [C(2)mim][NTf2] and the diffusion coefficient of species in solution was calculated to be 6.85 x 10(-12) m(2) s(-1) and confirmed that the waves corresponded to one and two electron processes. A third wave was observed at 1.8 V vs. Pt which is attributed to the oxidation of the amine group to a radical cation with likely subsequent follow up chemistry. In [C(4)mim][BF4] a peak at less positive potential was observed for dopamine, similar to catechol which is assigned to the adsorption of the neutral quinone species on the platinum electrode formed by the reaction of the removal of protons from the oxidised dopamine with the [BF4](-) anion. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of new technologies based on microstructured reactors in industrial processes, including the obtainment of hydrogen peroxide, the catalytic oxidation of ammonia, the utilization of rocket fuels, fine organic synthesis, polymerization, and phase transfer catalysis, were considered. The transition to microtechnologies considerably increases the performance of the process; at the same time, the product yield increases as compared with periodically operating reactors, which allows for a reduction of costs at the separation stage of the reaction mixture and the extraction of the reaction products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is focused on the demonstration of the advantages of miniaturized reactor systems which are essential for processes where potential for considerable heat transfer intensification exists as well as for kinetic studies of highly exothermic reactions at near-isothermal conditions. The heat transfer characteristics of four different cross-flow designs of a microstructured reactor/heat-exchanger (MRHE) were studied by CFD simulation using ammonia oxidation on a platinum catalyst as a model reaction. An appropriate distribution of the nitrogen flow used as a coolant can decrease drastically the axial temperature gradient in the reaction channels. In case of a microreactor made of a highly conductive material, the temperature non-uniformity in the reactor is strongly dependent on the distance between the reaction and cooling channels. Appropriate design of a single periodic reactor/heat-exchanger unit, combined with a non-uniform inlet coolant distribution, reduces the temperature gradients in the complete reactor to less than 4degreesC, even at conditions corresponding to an adiabatic temperature rise of about 1400degreesC, which are generally not accessible in conventional reactors because of the danger of runaway reactions. To obtain the required coolant flow distribution, an optimization study was performed to acquire the particular geometry of the inlet and outlet chambers in the microreactor/heat-exchanger. The predicted temperature profiles are in good agreement with experimental data from temperature sensors located along the reactant and coolant flows. The results demonstrate the clear potential of microstructured devices as reliable instruments for kinetic research as well as for proper heat management in the case of highly exothermic reactions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.

Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.

Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.

Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.

Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Family caregivers play a vital role in maintaining the lives of individuals with advanced illness living in the community. However, the responsibility of caregiving for an end-of-life family member can have profound consequences on the psychological, physical and financial well-being of the caregiver. While the literature has identified caregiver stress or strain as a complex process with multiple contributing factors, few comprehensive studies exist. This study examined a wide range of theory-driven variables contributing to family caregiver stress. Method: Data variables from interviews with primary family caregivers were mapped onto the factors within the Stress Process Model theoretical framework. A hierarchical multiple linear regression analysis was used to determine the strongest predictors of caregiver strain as measured by a validated composite index, the Caregiver Strain Index. Results: The study included 132 family caregivers across south-central/western Ontario, Canada. About half of these caregivers experienced high strain, the extent of which was predicted by lower perceived program accessibility, lower functional social support, greater weekly amount of time caregivers committed to the care recipient, younger caregiver age and poorer caregiver self-perceived health. Conclusion: This study examined the influence of a multitude of factors in the Stress Process Model on family caregiver strain, finding stress to be a multidimensional construct. Perceived program accessibility was the strongest predictor of caregiver strain, more so than intensity of care, highlighting the importance of the availability of community resources to support the family caregiving role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to explore the care processes experienced by community-dwelling adults dying from advanced heart failure, their family caregivers, and their health-care providers. A descriptive qualitative design was used to guide data collection, analysis, and interpretation. The sample comprised 8 patients, 10 informal caregivers, 11 nurses, 3 physicians, and 3 pharmacists. Data analysis revealed that palliative care was influenced by unique contextual factors (i.e., cancer model of palliative care, limited access to resources, prognostication challenges). Patients described choosing interventions and living with fatigue, pain, shortness of breath, and functional decline. Family caregivers described surviving caregiver burden and drawing on their faith. Health professionals described their role as trying to coordinate care, building expertise, managing medications, and optimizing interprofessional collaboration. Participants strove towards 3 outcomes: effective symptom management, satisfaction with care, and a peaceful death. © McGill University School of Nursing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative dehydrogenation of ethane was performed under conventional microreactor and TAP reactor conditions over a Pt/Al2O3 catalyst between 100 and 600 degreesC. During TAP studies, no ethene was produced whereas under flow conditions small but significant ethene formation was observed. This is consistent with a mechanism involving the gas-phase production of ethene rather than via a surface reaction. In comparison, both hydrogen and methane formation were found under TAP conditions and the trends with temperature and surface oxide composition are interpreted in terms of successive dehydrogenation steps on the catalyst surface. It is further observed that periodic introduction of the reactants can minimize deactivation processes. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chronic vascular complications of diabetes (nephropathy, retinopathy and accelerated atherosclerosis) are a major cause of morbidity and premature mortality. In spite of the more widespread availability of intensive diabetes management, approximately one in three people with diabetes develop aggressive complications and over 70% die of atherosclerosis-related diseases. Genetic and acquired factors are likely to be contributory. Potential mediators of vascular damage may include the interrelated processes of lipoprotein abnormalities, glycation, oxidation and endothelial dysfunction. Lipoprotein abnormalities encompass alterations in lipid concentrations, lipoprotein composition and subclass distribution and lipoprotein-related enzymes. Nonenzymatic glycation and oxidative damage to lipoproteins, other proteins and to vascular structures may also be deleterious. As atherosclerosis is a chronic condition commencing in youth, and because clinical events may be silent in diabetes, surrogate measures of vascular disease are important for early identification of diabetic patients with or at high risk of vascular damage, and for monitoring efficacy of interventions. The increasing array of biochemical assays for markers and mediators of vascular damage, noninvasive measures of vascular health, and therapeutic options should enable a reduction in the excessive personal and economic burden of vascular disease in type 1 and type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nepsilon-(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in concert with conjugated dienes but was independent of the presence of the Amadori compound, fructoselysine, on the protein. CML was also formed in a time-dependent manner in RNase incubated under aerobic conditions in phosphate buffer containing arachidonate or linoleate; only trace amounts of CML were formed from oleate. After 6 days of incubation the yield of CML in RNase from arachidonate was approximately 0.7 mmol/mol lysine compared with only 0.03 mmol/mol lysine for protein incubated under the same conditions with glucose. Glyoxal, a known precursor of CML, was also formed during incubation of RNase with arachidonate. These results suggest that lipid peroxidation, as well as glycoxidation, may be an important source of CML in tissue proteins in vivo and that CML may be a general marker of oxidative stress and long term damage to protein in aging, atherosclerosis, and diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modifications of extant plasma proteins, structural proteins,and other macromolecules are enhanced in diabetes because of increased glycation (secondary to increased glucose concentrations) and perhaps because of increased oxidative stress, Increased glycation is present from the time of onset of diabetes, but the relation between diabetes and oxidative stress is less clear: increased oxidative stress may occur later in the course of disease, as vascular damage becomes established, or it may be a feature of uncomplicated diabetes, The combined effects of protein modification by glycation and oxidation may contribute to the development of accelerated atherosclerosis in diabetes and to the development of microvascular complications, Thus, even if not increased by diabetes, variations in oxidative stress may modulate the consequences of hyperglycemia in individual diabetic patients, In this review, the close interaction between glycation and oxidative processes is discussed, and the theme is developed that the most significant modifications of proteins are the result of interactions with reactive carbonyl groups, While glucose itself contains a carbonyl group that is involved in the initial glycation reaction, the most important and reactive carbonyls are formed by free radical-oxidation reactions damaging either carbohydrates (including glucose itself) or lipids, The resulting carbonyl-containing intermediate products then modify proteins, yielding "glycoxidation" and "lipoxidation" products, respectively, This common pathway for glucose and lipid-mediated stress, which may contribute to diabetic complications, is the basis for the carbonyl stress hypothesis for the development of diabetic complications.