111 resultados para Adsorption.
Resumo:
For many decades it has been assumed that an adsorbate centered above a metal surface and with a net negative charge should increase the work function of the surface. However, despite their electronegativity, N adatoms on W{100} cause a significant work function decrease. Here we present a resolution of this anomaly. Using density functional theory, we demonstrate that while the N atom carries a negative charge, of overriding importance is a reduction in the surface overspill electron density into the vacuum, when that charge is engaged in bonding to the adatom. This novel interpretation is fundamentally important in the general understanding of work function changes induced by atomic adsorbates.
Resumo:
The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated.
Resumo:
The feasibility of using diatomite for the removal of the problematic reactive dyes as well as basic dyes from textile wastewater was investigated. Methylene blue, Cibacron reactive black and reactive yellow dyes were considered. Physical characteristics of diatomite such as pH(solution), pH(ZPC), surface area, Fourier transform infrared, and scanning electron microscopy were investigated. The surface area of diatomite was found to be 27.80 m(2) g(-1) and the pH(ZPC) occurred around pH of 5.4. The results indicated that the surface charge of diatomite decreased as the pH of the solution increased with the maximum methylene blue removal from aqueous solution occurring at basic pH of around (1011). Adsorption isotherms of diatomite with methylene blue, hydrolysed reactive black and yellow dyes were constructed at different pH values, initial dye concentrations and particle sizes. The experimental results were fitted to the Langmuir, Freundlich, and Henry models. The study indicated that electrostatic interactions play an important role in the adsorption of dyes onto diatomite. A model of the adsorption mechanism of methylene blue onto diatomite is proposed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study assesses the use of dried (5% w/w moisture) kudzu (Peuraria lobata ohwi) as an adsorbent medium for the removal of two basic dyes, Basic Yellow 21 and Basic Red 22, from aqueous solutions. The extent of adsorption was measured through equilibrium sorption isotherms for the single component systems. Equilibrium was achieved after 21 days. The experimental isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth isotherm equations. A detailed error analysis was undertaken to investigate the effect of using different error criteria for the determination of the single component isotherm parameters. The performance of the kudzu was compared with an activated carbon (Chemviron F-400). Kudzu was found to be an effective adsorbent for basic dye colour removal, though its capacity for colour removal was not as high as an activated carbon, the potential appeared to exist to use it as an alternative to activated carbon where carbon cost was prohibitive. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Peat has been widely used as a low cost adsorbent to remove a variety of materials including organic compounds and heavy metals from water. Various functional groups in lignin allow such compounds to bind on active sites of peat. The adsorption of Cu2+ and Ni2+ from aqueous solutions on Irish peat moss was studied both as a pure ion and from their binary mixtures under both equilibrium and dynamic conditions in the concentration range of 5–100 mg/L. The pH of the solutions containing either Cu2+ or Ni2+ was varied over a range of 2–8. The adsorption of Cu2+ and Ni+2 on peat was found to be pH dependent. The adsorption data could be fitted to a two-site Langmuir adsorption isotherm and the maximum adsorption capacity of peat was determined to be 17.6 mg/g for Cu2+ and 14.5 mg/g for Ni2+ at 298 K when the initial concentration for both Cu2+ and Ni2+ was 100 mg/L, and the pH of the solution was 4.0 and 4.5, respectively. Column studies were conducted to generate breakthrough data for both pure component and binary mixtures of copper and nickel. Desorption experiments showed that 2 mM EDTA solution could be used to remove all of the adsorbed copper and nickel from the bed.
Resumo:
Voltammetry is reported for chlorine, Cl-2, dissolved in various room temperature ionic liquids using platinum microdisk electrodes. A single reductive voltammetric wave is seen and attributed to the two-electron reduction of chlorine to chloride. Studies of the effect of voltage scan rate reveal uniquely unusual behavior in which the magnitude of the currents decrease with increasing scan rates. A model for this is proposed and shown to indicate the presence of strongly adsorbed species in the electrode reaction mechanism, most likely chlorine atoms, Cl*((ads)).
Resumo:
The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204 mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the cl-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The dynamics of adsorption and oxidation of CO on Ru(0001) electrode in sulfuric acid solution have been studied using in situ FTIR spectroscopy under potential control and at open circuit, the latter at 20 and 55 degrees C. The in situ IR data show clearly that the bisulfate anion adsorbs on the Ru(0001) surface over the potential range from -200 mV to 350 mV (vs. Ag/AgCl) at 20 degrees C in the absence and presence of adsorbed CO; however, increasing the temperature to 55 degrees C and/ or increasing the concentration of dissolved O-2 reduces the bisulfate adsorption. The formation of surface (hydro-) oxide at higher potentials replaces the bisulfate adsorbates. Both linear (COL) and three-fold hollow bonded CO (COH) adsorbates were produced following CO adsorption at Ru(0001) in H2SO4, as was observed in our previous studies in HClO4. However, the amount of adsorbed CO observed in H2SO4 was ca. 10% less than that in HClO4; in addition, the COL and COH frequencies were higher in H2SO4, and the onset potential for COads oxidation 25 mV lower. These new results are interpreted in terms of a model in which the adsorbed bisulfate weakens the CO adlayer, allowing the active Ru oxide layer to form at lower potentials. Significantly different results were observed at open circuit in H2SO4 compared both to the data under potential control and to our earlier data in HClO4, and these observations were rationalized in terms of the adsorbed HSO4- anions (pre-adsorbed at -200 mV) inhibiting the oxidation of the surface at open circuit (after stepping from the initial potential of -200 mV), as the latter was no longer driven by the imposed electrochemical potential but via chemical oxidation by trace dissolved O-2. Results from experiments at open circuit at 55 degrees C and using oxygen-saturated H2SO4 supported this model. The difference in Ru surface chemistry between imposed electrochemical control and chemical control has potential implications with respect to fuel cell electrocatalysis.
Resumo:
Abstract: Adsorption behaviour of reactive dyes in fixed-bed adsorber was evaluated in this work. The characteristics of mass transfer zone (MTZ), where adsorption in column occurs, were affected by carbon bed depth and influent dye concentration. The working lifetime (t(x)) of MTZ, the height of mass transfer zone (HMTZ), the rate of mass transfer zone (RMTZ), and the column capacity at exhaustion (q(column)) were estimated for the removal of remazol reactive yellow and remazol reactive black by carbon adsorber. The results showed that column capacity calculated at 90% of column exhaustion was lower than carbon capacity obtained from equilibrium studies. This indicated that the capacity of activated carbon was not fully utilized in the fixed-bed adsorber. The bed-depth service time model (BDST) was applied for analysis of reactive yellow adsorption in the column. The adsorption capacity of reactive yellow calculated at 50% breakthrough point (No) was found to be 0.1 kg kg(-1) and this value is equivalent to about 14% of the available carbon capacity. The results of this study indicated the applicability of fixed-bed adsorber for removing remazol reactive yellow from solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of a metal monolayer on a foreign substrate generates a change in the surface stress. We calculate this change for a number of substrate/adsorbate systems using the embedded-atom method. The results are compared with those obtained from a continuum model. A cycle, in which the stretching of a substrate/adsorbate system is decomposed into several steps, helps in understanding the numerical results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.