52 resultados para Adenosine Monophosphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: This study examined the plasma stability, biological activity and antidiabetic potential of two novel N-terminally modified analogues of gastric inhibitory polypeptide (GIP).

Methods: Degradation studies were carried out on GIP, N-acetyl-GIP (Ac-GIP) and N-pyroglutamyl-GIP (pGlu-GIP) in vitro following incubation with either dipeptidylpeptidase IV or human plasma. Cyclic adenosine 3'5' monophosphate (cAMP) production was assessed in Chinese hamster lung fibroblast cells transfected with the human GIP receptor. Insulin-releasing ability was assessed in vitro in BRIN-BD11 cells and in obese diabetic (ob/ob) mice.

Results: GIP was rapidly degraded by dipeptidylpeptidase IV and plasma (t1/2 2.3 and 6.2 h, respectively) whereas Ac-GIP and pGlu-GIP remained intact even after 24 h. Both Ac-GIP and pGlu-GIP were extremely potent (p<0.001) at stimulating cAMP production (EC50 values 1.9 and 2.7 nmol/l, respectively), almost a tenfold increase compared to native GIP (18.2 nmol/l). Both Ac-GIP and pGlu-GIP (10–13–10–8 mmol/l) were more potent at stimulating insulin release compared to the native GIP (p<0.001), with 1.3-fold and 1.2-fold increases observed at 10–8 mol/l, respectively. Administration of GIP analogues (25 nmol/kg body weight, i.p.) together with glucose (18 mmol/kg) in (ob/ob) mice lowered (p<0.001) individual glucose values at 60 min together with the areas under the curve for glucose compared to native GIP. This antihyperglycaemic effect was coupled to a raised (p<0.001) and more prolonged insulin response after administration of Ac-GIP and pGlu-GIP (AUC, 644±54 and 576±51 ng·ml–1·min, respectively) compared with native GIP (AUC, 257±29 ng·ml–1·min).

Conclusion/interpretation: Ac-GIP and pGlu-GIP, show resistance to plasma dipeptidylpeptidase IV degradation, resulting in enhanced biological activity and improved antidiabetic potential in vivo, raising the possibility of their use in therapy of Type II (non-insulin-dependent) diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives:
We studied whether an increase in adenosine dose overcomes caffeine antagonism on adenosine-mediated coronary vasodilation.

Background:
Caffeine is a competitive antagonist at the adenosine receptors, but it is unclear whether caffeine in coffee alters the actions of exogenous adenosine, and whether the antagonism can be surmounted by increasing the adenosine dose.

Methods:
Myocardial perfusion scintigraphy (MPS) was used to assess adenosine-induced hyperemia in 30 patients before (baseline) and after coffee ingestion (caffeine). At baseline, patients received 140 µg/kg/min of adenosine combined with low-level exercise. For the caffeine study, 12 patients received 140 µg/kg/min of adenosine (standard) and 18 patients received 210 µg/kg/min (high dose) after caffeine intake (200 mg). Myocardial perfusion was assessed semiquantitatively and quantitatively, and perfusion defect was characterized according to the presence of reversibility.

Results:
Caffeine reduced the magnitude of perfusion abnormality induced by standard adenosine as measured by the summed difference score (SDS) (12.0 ± 4.4 at baseline vs. 4.1 ± 2.1 after caffeine, p < 0.001) as well as defect size (18% [3% to 38%] vs. 8% [0% to 22%], p < 0.01), whereas it had no effect on the abnormalities caused by high-dose adenosine (SDS, 7.7 ± 4.0 at baseline vs. 7.8 ± 4.2 after caffeine, p = 0.7). There was good agreement between baseline and caffeine studies for segmental defect category (kappa = 0.72, 95% confidence interval: 0.65 to 0.79) in the high-dose group. An increase in adenosine after caffeine intake was well tolerated.

Conclusions:
Caffeine in coffee attenuates adenosine-induced coronary hyperemia and, consequently, the detection of perfusion abnormality by adenosine MPS. This can be overcome by increasing the adenosine dose without compromising test tolerability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine is a ubiquitous molecule present in every cell of the human body. It has a wide range of physiological functions mediated predominantly through specific cell surface adenosine receptors. Adenosine has both pro- and anti-inflammatory effects and acts on inflammatory and resident immune cells and antioxidant enzymes. The elevation of adenosine in the bronchoalveolar lavage (BAL) fluid of asthmatics combined with its bronchoconstrictor effect on the airways in asthmatics has led to increased research into the contribution of adenosine in the pathophysiology of inflammation and asthma. This review looks at the airway response to adenosine and at the interaction of adenosine with mast cells and basophils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that in vitro adenosine enhances histamine release from activated human lung mast cells obtained by enzymic dispersion of lung parenchyma. However, adenosine alone has no effect on histamine release from these cells. Given the evidence for direct activation of mast cells after endobronchial challenge with adenosine and previous studies indicating that mast cells obtained at bronchoalveolar lavage are a better model for asthma studies than those obtained by enzymic dispersion of lung tissue, the histamine-releasing effect of adenosine was examined on lavage mast cells. Bronchoalveolar lavage fluid was obtained from patients attending hospital for routine bronchoscopy (n = 54). Lavage cells were challenged with adenosine or adenosine receptor agonists (20 min, 37 degrees C) and histamine release determined using an automated fluorometric assay. Endogenous adenosine levels were also measured in lavage fluid (n = 9) via an HPLC method. Adenosine alone caused histamine release from ravage mast cells in 37 of 54 patients with a maximal histamine release of 20.56 +/- 2.52% (range 5.2-61 %). The adenosine receptor agonists (R)-N-6-(2-phenylisopropyl)adenosine, 5'-N-ethylcarboxamido-adenosine and CGS21680 also induced histamine release from lavage mast cells. Preincubation of lavage mast cells with the adenosine receptor antagonist xanthine amine congener caused significant inhibition of the response to adenosine (P = 0.007). There was an inverse correlation between endogenous adenosine levels in the lavage fluid and the maximal response to in vitro adenosine challenge of the lavage cells. The findings of the present study indicate a means by which adenosine challenge of the airways can induce bronchoconstriction and support a role for adenosine in the pathophysiology of asthma. The results also suggest that cells obtained from bronchoalveolar ravage fluid may provide the ideal model for the testing of novel, adenosine receptor, targeted therapies for asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[GRAPHICS]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced Raman (SERS) spectra of deoxyadenosine and 5'-dAMP on Ag and Au surfaces showed the protonation of both compounds in the N1 position, their orientation geometry on metal surfaces, and the formation of Ag+ complexes at alkaline pH on hydroxylamine-reduced Ag colloids. Interestingly, substitution at the N9 position caused dramatic changes in the relative band intensities within the spectra of both deoxyadenosine and 5'-dAMP compared to that of simple adenine, although they continued to be dominated by adenine vibrations. Concentration-dependent spectra of 5'-dAMP were observed, which matched that of adenine at high concentrations and that of deoxyadenosine at lower concentration (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this article is to review the interplay between adenosine and mast cells in asthma. Adenosine is an endogenous nucleoside released from metabolically active cells and generated extracellularly via the degradation of released ATP. It is a potent biological mediator that modulates the activity of numerous cell types including platelets, neutrophils and mast cells via action at specific adenosine receptors (A(1), A(2a), A(2b), A(3)). These receptors are expressed on mast cells but the exact pattern of receptor subtype expression depends on the source of the mast cells. Adenosine is also a potent bronchoconstricting agent and is suggested to contribute to the pathophysiology of asthma. Evidence is provided to suggest that the nucleoside exerts its influence on the asthmatic condition through its ability to modulate the release of mast cell derived mediators. However, the mechanism of adenosine/mast cell interaction which contributes to asthma remains unclear. Progress in the area has been hampered by the heterogeneity of mast cell responses and a lack of highly specific receptor agonists and antagonists. The expression of different adenosine receptor subtypes on mast cells is described. The final section of the review presents data to suggest that BAL mast cells may provide an accurate and relevant model for future investigations and together with the development of superior pharmacological tools, may aid the realisation of the therapeutic potential of adenosine/mast cell interactions in asthma. In conclusion, the role of adenosine in asthma is clearly complex. A better understanding of the contribution of adenosine to the asthmatic condition may lead to novel therapeutic approaches in the treatment of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two families of membrane enzymes catalyze the initiation of the synthesis of O-antigen lipopolysaccharide. The Salmonella enterica Typhimurium WbaP is a prototypic member of one of these families. We report here the purification and biochemical characterization of the WbaP C-terminal (WbaP(CT)) domain harboring one putative transmembrane helix and a large cytoplasmic tail. An N-terminal thioredoxin fusion greatly improved solubility and stability of WbaP(CT) allowing us to obtain highly purified protein. We demonstrate that WbaP(CT) is sufficient to catalyze the in vitro transfer of galactose (Gal)-1-phosphate from uridine monophosphate (UDP)-Gal to the lipid carrier undecaprenyl monophosphate (Und-P). We optimized the in vitro assay to determine steady-state kinetic parameters with the substrates UDP-Gal and Und-P. Using various purified polyisoprenyl phosphates of increasing length and variable saturation of the isoprene units, we also demonstrate that the purified enzyme functions highly efficiently with Und-P, suggesting that the WbaP(CT) domain contains all the essential motifs to catalyze the synthesis of the Und-P-P-Gal molecule that primes the biosynthesis of bacterial surface glycans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three novel dinucleotide analogues of nicotinamide adenine dinucleotide (NAD+) have been synthesised from -ribonolactone. These compounds incorporate a thiophene moiety in place of nicotinamide and are hydrolytically stable. They have been evaluated as inhibitors of adenosine diphosphate ribosyl cyclase, glutamate dehydrogenase and Sir2 acyltransferase activities. Enzyme specificity and a high level of inhibition was observed for the dehydrogenase.