18 resultados para Addition-fragmentation Chain
Resumo:
The prothrombin G20210A polymorphism is associated with a threefold-increased risk of venous thrombosis. There is considerable variation in the reported prevalence of this polymorphism within normal populations, ranging from 0 to 6.5%. The prevalence within the Irish population has not been determined. A restriction fragment length polymorphism (RFLP)-based assay is commonly used for the detection of the prothrombin 20210A allele. This assay does not include a control restriction digest fragment and, consequently, failure of the enzyme activity or lack of addition of enzyme to the sample cannot be distinguished from wild-type prothrombin. We developed a RFLP-based assay, which incorporates an invariant digest site, resulting in the generation of a control digest fragment. Furthermore, we developed a nested polymerase chain reaction (PCR) method for the amplification and digestion of poor-quality or low-concentration DNA. In the Irish population studied, five of 385 (1.29%) were heterozygous and one patient was homozygous for the prothrombin 20210A polymorphism. This is the first reported data on an Irish or Celtic population and suggests that the allele frequency is similar to Anglo-Saxon populations. The nested PCR method successfully amplified and digested 100/100 (100%) of the archived samples; none of these samples could be analyzed by the standard single-round PCR method. In conclusion, nested PCR should be considered in the analysis of archived samples. Single-round PCR is appropriate for recently collected samples; however, an invariant control digest site should be incorporated in RFLP-based assays to validate the integrity of the digestion enzyme and limit the risk of false-negative results.
Resumo:
A 12 amino acid sequence from the adenovirus 12 E1B protein is homologous at the protein level with a similar 12-mer derived from the wheat protein A-gliadin. It has been suggested that exposure to Ad 12 could sensitise individuals to gliadins with resultant gluten sensitive enteropathy. In this study, the polymerase chain reaction (PCR) was used to analyse duodenal biopsy tissue from patients with coeliac disease for the presence of Ad 12. The sensitivity of the assay system was at least 1 in 10(5) cells and specificity was confirmed both by probing with an internal oligonucleotide and by direct sequencing. Ad 12 sequences were detected in three of 17 patients with adult coeliac disease and in five of 16 adult controls with normal duodenal biopsies. Since exposure to the virus would be predicted to occur in infancy we also studied patients with childhood coeliac disease diagnosed at less than 1 year of age. Ad 12 was positive in three of 10 childhood coeliac patients and one of seven controls. In addition, we studied a cohort of patients who presented with a diarrhoeal illness and associated anti alpha gliadin antibodies in 1983. These patients had duodenal biopsies performed at this time. One of three patients with abnormal histology had detectable Ad 12 while two of 14 with normal findings were positive for Ad 12. Finally, the potential oncogenic nature of Ad 12 prompted examination of a group of patients with intestinal tumours. Ad 12 DNA was, however, in only two of 19 tumour samples tested. These data indicate that Ad 12 can be successfully detected using PCR on paraffin embedded tissue. Furthermore, Ad 12 was detected at a relatively high level in normal duodenum. The results do not, however, support the hypothesis that prior exposure to Ad 12 is implicated in the pathogenesis of coeliac disease.
Resumo:
Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.