75 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
Resumo:
A novel methodology is proposed for the development of neural network models for complex engineering systems exhibiting nonlinearity. This method performs neural network modeling by first establishing some fundamental nonlinear functions from a priori engineering knowledge, which are then constructed and coded into appropriate chromosome representations. Given a suitable fitness function, using evolutionary approaches such as genetic algorithms, a population of chromosomes evolves for a certain number of generations to finally produce a neural network model best fitting the system data. The objective is to improve the transparency of the neural networks, i.e. to produce physically meaningful
Resumo:
Neural network models have been explored for the prediction of the liquid-liquid equilibrium data and aromatic/aliphatic selectivity values. Four ternary systems composed of toluene, heptane, and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate, or 1,3-dimethylimidazolium methylsulfate were investigated at 313.2 and 348.2 K.
Resumo:
The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.
Resumo:
Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.
Resumo:
This article discusses the identification of nonlinear dynamic systems using multi-layer perceptrons (MLPs). It focuses on both structure uncertainty and parameter uncertainty, which have been widely explored in the literature of nonlinear system identification. The main contribution is that an integrated analytic framework is proposed for automated neural network structure selection, parameter identification and hysteresis network switching with guaranteed neural identification performance. First, an automated network structure selection procedure is proposed within a fixed time interval for a given network construction criterion. Then, the network parameter updating algorithm is proposed with guaranteed bounded identification error. To cope with structure uncertainty, a hysteresis strategy is proposed to enable neural identifier switching with guaranteed network performance along the switching process. Both theoretic analysis and a simulation example show the efficacy of the proposed method.
Resumo:
Fuzzy-neural-network-based inference systems are well-known universal approximators which can produce linguistically interpretable results. Unfortunately, their dimensionality can be extremely high due to an excessive number of inputs and rules, which raises the need for overall structure optimization. In the literature, various input selection methods are available, but they are applied separately from rule selection, often without considering the fuzzy structure. This paper proposes an integrated framework to optimize the number of inputs and the number of rules simultaneously. First, a method is developed to select the most significant rules, along with a refinement stage to remove unnecessary correlations. An improved information criterion is then proposed to find an appropriate number of inputs and rules to include in the model, leading to a balanced tradeoff between interpretability and accuracy. Simulation results confirm the efficacy of the proposed method.
Resumo:
This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness
Resumo:
A three-phase four-wire shunt active power filter for harmonic mitigation and reactive power compensation in power systems supplying nonlinear loads is presented. Three adaptive linear neurons are used to tackle the desired three-phase filter current templates. Another feedforward three-layer neural network is adopted to control the output filter compensating currents online. This is accomplished by producing the appropriate switching patterns of the converter's legs IGBTs. Adequate tracking of the filter current references is obtained by this method. The active filter injects the current required to compensate for the harmonic and reactive components of the line currents, Simulation results of the proposed active filter indicate a remarkable improvement in the source current waveforms. This is reflected in the enhancement of the unified power quality index defined. Also, the filter has exhibited quite a high dynamic response for step variations in the load current, assuring its potential for real-time applications