45 resultados para Adam, Meldrum and Anderson Dry Goods and Carpets
Resumo:
In durable goods markets, many brand name manufacturers, including IBM, HP, Epson, and Lenovo, have adopted dual-channel supply chains to market their products. There is scant literature, however, addressing the product durability and its impact on players’ optimal strategies in a dual-channel supply chain. To fill this void, we consider a two-period dual-channel model in which a manufacturer sells a durable product directly through both a manufacturer-owned e-channel and an independent dealer who adopts a mix of selling and leasing to consumers. Our results show that the manufacturer begins encroaching into the market in Period 1, but the dealer starts withdrawing from the retail channel in Period 2. Moreover, as the direct selling cost decreases, the equilibrium quantities and wholesale prices become quite angular and often nonmonotonic. Among other results, we find that both the dealer and the supply chain may benefit from the manufacturer’s encroachment. Our results also indicate that both the market structure and the nature of competition have an important impact on the player’s (dealer’s) optimal choice of leasing and selling.
Resumo:
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography-mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gamma-proteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.
Resumo:
This paper proposes a novel mechanism for the fertility decline that occurred across the world since the late nineteenth century. It suggests that the rise in the cost of children relative to leisure goods in the process of development contributed to the decline in fertility. The paper develops a unified growth model in which children are substitutes for leisure goods in the parental utility function. The theory suggests that the rise in income, the decline in the relative price of leisure goods and the increase in educational attainment in the process of development speed up the demographic transition from high to low fertility and contributed to the transition from stagnation to growth.
Resumo:
An automated immunoassay for the detection of nicarbazin residues in poultry eggs and liver was developed. The assay was based on a novel all-in-one dry chemistry concept and time-resolved fluorometry. The analyte specific antibody was immobilized into a single microtiter well and covered with an insulation layer, on top of which the label was dried in a small volume. The extracted sample was added automatically to the dry microtiter well, and the result was available within 18 min. Due to the rapidity and simplicity, the quantitative immunoassay could also be used as a high throughput screening method. The analytical limit of detection for the assay was calculated as 0.1 ng mL(-1) (n = 12) and the functional limit of detection as 3.2 ng g(-1) for egg (n = 6) and 11.3 ng g(-1) for liver (n = 6) samples. The sample recovery varied from 97.3 to 115.6%. Typically, the intra-assay variations were less than 10%, and interassay variations ranged between 8.1 and 13.6%.
Resumo:
Zeranol, an oestrogenic growth promoter in food animals, is banned within the European Union (EU). However, commercially available immunoassay kits for zeranol cross-react with toxins formed by naturally occurring Fusarium spp. fungi, leading to false-positive screening results. This paper describes the validation of a specificity enhanced, rapid dry reagent time-resolved fluoroimmunoassay (TR-FIA) for zeranol (recovery 99%, limit of detection 1.3 ng ml(-1)) demonstrating that up to 150 ng ml(-1) of Fusarium spp. toxins in urine do not lead to false-positive results. This assay will assist EU Member States to implement Council Directive 961 23\EC, which requires states to monitor for potential abuses of zeranol. A similar TR-FIA for the Fusarium spp. toxin a-zearalenol, using the same sample extract, is also described (recovery 68%, limit of detection 5.6 ng ml(-1)). Only the addition of diluted sample extract is required to perform these dry-reagent TR-FIAs, the results being available within 1 h of extract application. The EU-funded project 'Natural Zeranol' (FAIR5-CT97-3443) will use these fluoroimmunoassays to screen bovine urine in four Member States to gather data on the seasonality of Fusarium spp. toxin contamination of urine and the incidence of zeranol screening test positives.
Resumo:
Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.
Resumo:
Purpose: Theoretical modelling techniques are often used to simulate the action of ionizing radiations on cells at the nanometre level, Using monoenergetic vacuum-UV (VUV) radiation to irradiate DNA either dry or humidified, the action spectra for the induction of DNA damage by low energy photons and the role of water and can be studied. These data provide inputs for the theoretical models.
Resumo:
The crop management practice of alternate wetting and drying (AWD) is being promoted by IRRI and the national research and extension program in Bangladesh and other parts of the world as a water-saving irrigation practice that reduces the environmental impact of dry season rice production through decreased water usage, and potentially increases yield. Evidence is growing that AWD will dramatically reduce the concentration of arsenic in harvested rice grains conferring a third major advantage over permanently flooded dry season rice production. AWD may also increase the concentration of essential dietary micronutrients in the grain. However, three crucial aspects of AWD irrigation require further investigation. First, why is yield generally altered in AWD? Second, is AWD sustainable economically (viability of farmers' livelihoods) and environmentally (aquifer water table heights) over long-term use? Third, are current cultivars optimized for this irrigation system? This paper describes a multidisciplinary research project that could be conceived which would answer these questions by combining advanced soil biogeochemistry with crop physiology, genomics, and systems biology. The description attempts to show how the breakthroughs in next generation sequencing could be exploited to better utilize local collections of germplasm and identify the molecular mechanisms underlying biological adaptation to the environment within the context of soil chemistry and plant physiology.
Resumo:
Bulk paleosol samples collected from a Middle to Early Miocene moraine in the New Mountain area of the Dry Valleys, Antarctica, yielded Coleoptera exoskeletons and occasional endoskeletons showing considerable diagenetic effects along with several species of bacteria, all lodged in a dry-frozen but salt-rich horizon at shallow depth to the land surface. The till is at the older end of a chronologic sequence of glacial deposits, thought to have been deposited before the transition from wet-based to cold-based ice (similar to 15 Ma), and hence, entirely weathered in contact with the subaerial atmosphere. It is possible, though not absolutely verifiable, that the skeletons date from this early stage of emplacement having undergone modifications whenever light snowmelt occurred or salt concentrations lowered the freezing temperature to maintain water as liquid. Correlation of the Coleoptera species with cultured bacteria in the sample and the likelihood of co-habitation with Beauveria bassiani found in two adjacent, although younger paleosols, leads to new questions about the antiquity of the Coleoptera and the source of N and glucose from chitinase derived from the insects. The skeletons in the 831 section may date close to the oldest preserved chitin (Oligocene) yet found on Earth. While harsh Martian conditions make it seemingly intolerable for complex, multicellular organisms such as insects to exist in the near-surface and subaerially, life within similar cold, dry paleosol microenvironments (Cryosols) of Antarctica point to life potential for the Red Planet, especially when considering the relatively diverse microbe (bacteria and fungi) population. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/I 2-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.