26 resultados para Actuarial instrument


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton׳s equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton׳s method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the design of a Frequency Selective Surface (FSS) which simultaneously allows transmission of 175.3 – 191.3 GHz radiation and rejection from 164 - 167 GHz with a loss <0.5 dB for TE wave polarization at 45° incidence. The state-of-the art filter consists of three air spaced perforated screens with unit cells that are composed of nested resonant slots. The FSS satisfies the stringent electromagnetic performance requirements for signal demultiplexing in the quasi-optical feed train of the Microwave Sounder (MWS) instrument which is under development for the MetOp-SG mission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a portable electrochemical instrument capable of detecting and identifying heavy metals in soil, in situ. The instrument has been developed for use in a variety of situations to facilitate contaminated land surveys, avoiding expensive and time-consuming procedures. The system uses differential pulse anodic stripping voltammetry which is a precise and sensitive analytical method with excellent limits of detection. The identification of metals is based on a statistical microprocessor-based method. The instrument is capable of detecting six different toxic metals (lead, cadmium, zinc, nickel, mercury and copper) with good sensitivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design of a frequency selective surface (FSS) which provides transmission of 228 - 230 GHz radiation and rejection from 164 – 191.3 GHz with insertion losses under 0.25 dB for TE wave polarization at 45 incidence. This state-of-the art filter consists of two air spaced freestanding perforated screens, comprising unit cell elements of resonant slots folded for the purpose of miniaturisation to enhance angular stability. The reported geometry enhances the angular stability (45 ± 10) of the FSS beyond what is possible with canonical linear slots and satisfies the stringent electromagnetic performance requirements for signal demultiplexing in the quasi-optical feed train of the Microwave Sounder (MWS) instrument.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language experience clearly affects the perception of speech, but little is known about whether these differences in perception extend to non-speech sounds. In this study, we investigated rhythmic perception of non-linguistic sounds in speakers of French and German using a grouping task, in which complexity (variability in sounds, presence of pauses) was manipulated. In this task, participants grouped sequences of auditory chimeras formed from musical instruments. These chimeras mimic the complexity of speech without being speech. We found that, while showing the same overall grouping preferences, the German speakers showed stronger biases than the French speakers in grouping complex sequences. Sound variability reduced all participants' biases, resulting in the French group showing no grouping preference for the most variable sequences, though this reduction was attenuated by musical experience. In sum, this study demonstrates that linguistic experience, musical experience, and complexity affect rhythmic grouping of non-linguistic sounds and suggests that experience with acoustic cues in a meaningful context (language or music) is necessary for developing a robust grouping preference that survives acoustic variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increase in the Balmer continuum radiation during solar flares was predicted by various authors, but has never been firmly confirmed observationally using ground-based slit spectrographs. Here we describe a new post-focal instrument, the image selector, with which the Balmer continuum flux can be measured from the whole flare area, in analogy to successful detections of flaring dMe stars. The system was developed and put into operation at the horizontal solar telescope HSFA2 of the Ondřejov Observatory. We measure the total flux by a fast spectrometer from a limited but well-defined region on the solar disk. Using a system of diaphragms, the disturbing contribution of a bright solar disk can be eliminated as much as possible. Light curves of the measured flux in the spectral range 350 – 440 nm are processed, together with the Hα images of the flaring area delimited by the appropriate diaphragm. The spectral flux data are flat-fielded, calibrated, and processed to be compared with model predictions. Our analysis of the data proves that the described device is sufficiently sensitive to detect variations in the Balmer continuum during solar flares. Assuming that the Balmer-continuum kernels have at least a similar size as those visible in Hα, we find the flux increase in the Balmer continuum to reach 230 – 550 % of the quiet continuum during the observed X-class flare. We also found temporal changes in the Balmer continuum flux starting well before the onset of the flare in Hα.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In acoustic instruments, the controller and the sound producing system often are one and the same object. If virtualacoustic instruments are to be designed to not only simulate the vibrational behaviour of a real-world counterpart but also to inherit much of its interface dynamics, it would make sense that the physical form of the controller is similar to that of the emulated instrument. The specific physical model configuration discussed here reconnects a (silent) string controller with a modal synthesis string resonator across the real and virtual domains by direct routing of excitation signals and model parameters. The excitation signals are estimated in their original force-like form via careful calibration of the sensor, making use of adaptive filtering techniques to design an appropriate inverse filter. In addition, the excitation position is estimated from sensors mounted under the legs of the bridges on either end of the prototype string controller. The proposed methodology is explained and exemplified with preliminary results obtained with a number of off-line experiments.