19 resultados para Accelerometers.
Resumo:
Many of the bridges currently in use worldwide are approaching the end of their design lives. However, rehabilitating and extending the lives of these structures raises important safety issues. There is also a need for increased monitoring which has considerable cost implications for bridge management systems. Existing structural health monitoring (SHM) techniques include vibration-based approaches which typically involve direct instrumentation of the bridge and are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive. In the past decade, alternative indirect vibration-based approaches which utilise the response of a vehicle passing over a bridge have been developed. This paper investigates such an approach; a low-cost approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. The approach aims to detect damage in the bridge while obviating the need for direct instrumentation of the bridge. Here, the effectiveness of the approach in detecting damage in a bridge is investigated using a simplified vehicle-bridge interaction (VBI) model in theoretical simulations and a scaled VBI model in a laboratory experiment. In order to identify the existence and location of damage, the vehicle accelerations are recorded and processed using a continuous Morlet wavelet transform and a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level and road surface roughness on the accuracy of results.
Resumo:
This paper investigates a low-cost wavelet-based approach for the preliminary monitoring of bridge structures, consisting of the use of a vehicle fitted with accelerometers on its axles. The approach aims to reduce the need for direct instrumentation of the bridge. A time-frequency analysis is carried out in order to identify the existence and location of damage from vehicle accelerations. Firstly, in theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach. A number of damage indicators are evaluated and compared. A range of parameters such as the bridge span, vehicle speed, damage level and location, signal noise and road roughness are varied in simulations. Secondly, a scaled laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the selected damage indicators to detect changes in the bridge response from vehicle accelerations.
Resumo:
A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.
Resumo:
This paper presents the results of a real bridge field experiment, carried out on a fiber reinforced polymer (FRP) pedestrian truss bridge of which nodes are reinforced with stainless steel plates. The aim of this paper is to identify the dynamic parameters of this bridge by using both conventional techniques and a model updating algorithm. In the field experiment, the bridge was instrumented with accelerometers at a number of locations on the bridge deck, recording both vertical and transverse vibrations. It was excited via jump tests at particular locations along its span and the resulting acceleration signals are used to identify dynamic parameters, such as the bridge mode shape, natural frequency and damping constant. Pedestrianinduced vibrations are also measured and utilized to identify dynamic parameters of the bridge. For a complete analysis of the bridge, a numerical model of the FRP bridge is created whose properties are calibrated utilizing a model updating algorithm. Comparable frequencies and mode shapes to those from the experiment were obtained by the FE models considering the reinforcement by increasing elastic modulus at every node of the bridge by stainless steel plate. Moreover, considering boundary conditions at both ends as fixed in the model resulted in modal properties comparable/similar to those from the experiment. This study also demonstrated that the effect of reinforcement and boundary conditions must be properly considered in an FE model to analyze real behavior of the FRP bridge.