66 resultados para APPARENT VISCOSITY
Resumo:
Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimidazolium. trifluoromethylsulfonate ([C(4)mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(4)mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of similar to 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of root(rho eta) approximate to 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.
Resumo:
The kinetics of the water-gas shift reaction Were Studied on a 0.2% Pt/CeO2 catalyst between 177 and 300 degrees C over a range of CO and steam pressures. A rate decrease with increasing partial pressure of CO was experimentally observed over this sample, confirming that a negative order in CO can occur under certain conditions at low temperatures. The apparent reaction order of CO measured at 197 degrees C was about -0.27. This value is significantly larger than that (i.e, -0.03) reported by Ribeiro and co-workers [A.A. Phatak, N. Koryabkina, S. Rai, J.L. Ratts, W. Ruettinger, R.J. Farrauto, G.E. Blau, W.N. Delgass, F.H. Ribeiro, Catal. Today 123 (2007) 224] at a similar temperature. A kinetic peculiarity was also evidenced, i.e. a maximum of the reaction rate as a function of the CO concentration or possibly a kinetic break, which is sometimes observed in the oxidation of simple molecules. These observations support the idea that competitive adsorption of CO and H2O play an essential role in the reaction mechanism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The physical effect of high concentrations of reversibly dissolved SO2 on [C(2)mim][NTf2] was examined using cyclic voltammetry, chronoamperometry, and ESR spectroscopy. Cyclic voltammetry of the oxidation of solutions of ferrocene, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and chloride in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide ([C(2)mim][NTf2]) reveals an increase in limiting current of each species corresponding to the addition of increasing concentrations of sulfur dioxide. Quantitative chronoamperometry reveals an increase in each species' diffusion coefficient with SO2 concentration. When chronoamperometric data were obtained for ferrocene in [C(2)mim][NTf2] at a range of temperatures, the translational diffusion activation energy (29.0 +/- 0.5 kJ mol(-1)) was found to be in good agreement with previous studies. Adding SO2 results in apparent near-activationless translational diffusion. A significant decrease in the activation energy of rotational diffusion with the SO2 saturation of a 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) solution in [C(2)mim][NTf2] (29.9 +/- 2.0 to 7.7 +/- 5.3 kJ mol(-1)) was observed using electron spin resonance (ESR) spectroscopy. The reversible physical absorption Of SO2 by [C(2)mim][NTf2] should have no adverse effect on the ability of that ionic liquid to be employed as a solvent in an electrochemical gas sensor, and it is possible that the SO2-mediated reduction of RTIL viscosity could have intrinsic utility.
Resumo:
There is an increasing need to identify the effect of mix composition on the rheological properties of cementitious grouts using minislump, Marsh cone, cohesion plate, washout test, and cubes to determine the fluidity, the cohesion, and other mechanical properties of grouting applications. Mixture proportioning involves the tailoring of several parameters to achieve adequate fluidity, cohesion, washout resistance and compressive strength. This paper proposes a statistical design approach using a composite fractional factorial design which was carried out to model the influence of key parameters on the performance of cement grouts. The responses relate to performance included minislump, flow time using Marsh cone, cohesion measured by Lombardi plate meter, washout mass loss and compressive strength at 3, 7, and 28 days. The statistical models are valid for mixtures with water-to-binder ratio of 0.37–0.53, 0.4–1.8% addition of high-range water reducer (HRWR) by mass of binder, 4–12% additive of silica fume as replacement of cement by mass, and 0.02–0.8% addition of viscosity modifying admixture (VMA) by mass of binder. The models enable the identification of underlying factors and interactions that influence the modeled responses of cement grout. The comparison between the predicted and measured responses indicated good accuracy of the established models to describe the effect of the independent variables on the fluidity, cohesion, washout resistance and the compressive strength. This paper demonstrates the usefulness of the models to better understand trade-offs between parameters. The multiparametric optimization is used to establish isoresponses for a desirability function for cement grout. An increase of HRWR led to an increase of fluidity and washout, a reduction in plate cohesion value, and a reduction in the Marsh cone time. An increase of VMA demonstrated a reduction of fluidity and the washout mass loss, and an increase of Marsh cone time and plate cohesion. Results indicate that the use of silica fume increased the cohesion plate and Marsh cone, and reduced the minislump. Additionally, the silica fume improved the compressive strength and the washout resistance.
Resumo:
Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA) and preformed photosensitisers. In this study, we investigated the potential of jet injection to deliver both ALA and a preformed photosensitiser (meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, TMP) into a defined volume of skin. Initial studies using a model hydrogel showed that as standoff distance is increased, injection depth decreases. As the ejected volume is increased, injection depth increases. It was also shown, for the first time, that, as injection solution viscosity was increased, for a given injection setting and standoff distance, both total depth of jet penetration, L-t, and depth at which the maximum width of the penetration pattern occurred, L-m, decreased progressively. For a standoff distance of zero, the maximum width of the penetration pattern, L-w, increased progressively with increasing viscosity at each of the injection settings. Conversely, when the standoff distance was 2.5 mm, L-w decreased progressively with increasing viscosity. Studies with neonate porcine skin revealed that an injection protocol comprising an 8.98 mPas solution, an arbitrary injection setting of 8 and a standoff distance of zero was capable of delivering photosensitisers to a volume of tissue (L-t of 2.91 mm, L-m of 2.14 mm, L-w of 5. 10 mm) comparable to that occupied by a typical nodular basal cell carcinoma. Both ALA and TMP were successfully delivered using jet injection, with peak tissue concentrations (67.3 mg cm(-3) and 5.6 mg cm(-3), respectively) achieved at a depth of around 1.0 mm and substantial reductions in drug concentration seen at depths below 3.0 mm. Consequently, jet injection may be suitable for selective targeting of ALA or preformed photosensitisers to skin tumours. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A microfluidic glass chip system incorporating a quartz crystal microbalance (QCM) to measure the square root of the viscosity-density product of room temperature ionic liquids (RTILs) is presented. The QCM covers a central recess on a glass chip, with a seal formed by tightly clamping from above outside the sensing region. The change in resonant frequency of the QCM allows for the determination of the square root viscosity-density product of RTILs to a limit of similar to 10 kg m(-2) s(-0.5). This method has reduced the sample size needed for characterization from 1.5 ml to only 30 mu l and allows the measurement to be made in an enclosed system.
Resumo:
Madagascar has lost about half of its forest cover since 1953 with much regional variation, for instance most of the coastal lowland forests have been cleared. We sampled the endemic forest dwelling Helictopleurini dung beetles across Madagascar during 2002–2006. Our samples include 29 of the 51 previously known species for which locality information is available. The most significant factor explaining apparent extinctions (species not collected by us) is forest loss within the historical range of the focal species, suggesting that deforestation has already caused the extinction, or effective extinction, of a large number of insect species with small geographical ranges, typical for many endemic taxa in Madagascar. Currently, roughly 10% of the original forest cover remains. Species–area considerations suggest that this will allow roughly half of the species to persist. Our results are consistent with this prediction.
Resumo:
We consider tunneling of a nonrelativistic particle across a potential barrier. It is shown that the barrier acts as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted in the coordinate space backward relative to the free propagation. Although along each pathway causality is explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a Dirac delta function, the transmission amplitude is superoscillatory for finite momenta and tunneling leads to an accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the increase in its velocity. It is argued that analyzing apparent
Resumo:
Fluidised hot melt granulation (FHMG) is a novel granulation technique for processing pharmaceutical powders. Several process and formulation parameters have been shown to significantly influence granulation characteristics within FHMG. In this study we have investigated the effect of the binder properties (binder particle size and binder viscosity) on agglomerate growth mechanisms within FHMG. Low-melting point co-polymers of polyoxyethylene–polyoxypropylene (Lutrol® F68 Poloxamer 188 and Lutrol® F127 Poloxamer 407) were used as meltable binders for FHMG, while standard ballotini beads were used as model fillers for this process. Standard sieve analysis was used to determine the size distribution of granules whereas we utilised fluorescence microscopy to investigate the distribution of binder within granules. This provided further insight into the growth mechanisms during FHMG. Binder particle size and viscosity were found to affect the onset time of granulation. Agglomerate growth achieved equilibrium within short time-scales and was shown to proceed by two competing processes, breakage of formed granules and re-agglomeration of fractured granules. Breakage was affected by the initial material properties (binder size and viscosity). When using binder with a small particle size (<250 µm), agglomerate growth via a distribution mechanism dominated. Increasing the binder particle size shifted the granulation mechanism such that agglomerates were formed predominantly via immersion. A critical ratio between binder diameter and filler has been calculated and this value may be useful for predicting or controlling granulation growth processes.