18 resultados para ANSYS FEM APDL
Resumo:
This paper presents a surrogate-model based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine’s previous operational performance, the DFIG’s stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization (PSO)-based surrogate optimization techniques are used in conjunction with the finite element method (FEM) to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.
Resumo:
A detailed study of bi-material composites, using meshless methods (MMs), is presented in this paper. Firstly, representative volume elements (RVEs) for different bi-material combinations are analysed by the element-free Galerkin (EFG) method in order to confirm the effective properties of heterogeneous material through homogenization. The results are shown to be in good agreement with experimental results and those obtained using the finite element method (FEM) which required a higher node density. Secondly, a functionally graded material (FGM), with a crack, is analysed using the EFG method. This investigation was motivated by the possibility of replacing the distinct fibrematrix interface with a FGM interface. Finally, an illustrative example showing crack propagation, in a two-dimension micro-scale model of a SiC/Al composite is presented.
Resumo:
In the research of the microstructural influence on dynamic compression, an assumption that the α and the β phases in titanium alloys were linearly strengthened was proposed, and a two-dimensional model using ANSYS (ANSYS, Inc., Canonsburg, PA) focusing on the role of microgeometrical structure was developed. By comparing the stress and strain distributions of different microstructures, the roles of cracks and phase boundaries in titanium compression were studied.