179 resultados para AIDS PREVENTION
Resumo:
Cataract is the leading cause of visual impairment worldwide. In the UK, some 30% of the population over 65 years of age have visually impairing cataract. Importantly, 88% of those with treatable visual impairment from cataract are not in contact with any ocular healthcare service, representing a major potential healthcare need [1]. In the USA, it has been estimated that 17.2% of the population (approximately 20.5 million) over 40 years of age have cataract in either eye and by 2020, this number is expected to rise to 30.1 million. Currently, cataract is responsible for 60% of Medicare costs associated with vision [2]. Furthermore, as the populations of industrialized countries such as the UK and the USA continue to age, the costs associated with treatment of cataract can only be expected to increase. Consequently, the development of the intraocular lens to replace the cataractous lens and the advances in intraocular lens design and implantation represent a major development in cataract treatment. However, despite such advances, cataract surgery is not without complications, such as postoperative infectious endophthalmitis, a rare but potentially devastating condition, and posterior capsular opacification, a less serious but much more common problem. This review will examine the epidemiology of cataracts, the polymeric construction of intraocular lenses implanted during cataract surgery and the complications of postoperative infectious endophthalmitis and posterior capsular opacification with regard to therapeutic interventions and prophylactic strategies. Advances in biomaterial design and function will be discussed as novel approaches to prevent such postoperative complications.
Resumo:
This study presents a reproducible, cost-effective in vitro encrustation model and, furthermore, describes the effects of components of the artificial urine and the presence of agents that modify the action of urease on encrustation on commercially available ureteral stents. The encrustation model involved the use of small-volume reactors (700 mL) containing artificial urine and employing an orbital incubator (at 37 degrees C) to ensure controlled stirring. The artificial urine contained sources of calcium and magnesium (both as chlorides), albumin and urease. Alteration of the ratio (% w/w) of calcium salt to magnesium salt affected the mass of encrustation, with the greatest encrustation noted whenever magnesium was excluded from the artificial urine. Increasing the concentration of albumin, designed to mimic the presence of protein in urine, significantly decreased the mass of both calcium and magnesium encrustation until a plateau was observed. Finally, exclusion of urease from the artificial urine significantly reduced encrustation due to the indirect effects of this enzyme on pH. Inclusion of the urease inhibitor, acetohydroxamic acid, or urease substrates (methylurea or ethylurea) into the artificial medium markedly reduced encrustation on ureteral stents. In conclusion, this study has described the design of a reproducible, cost-effective in vitro encrustation model. Encrustation was markedly reduced on biomaterials by the inclusion of agents that modify the action of urease. These agents may, therefore, offer a novel clinical approach to the control of encrustation on urological medical devices. (c) 2005 Wiley Periodicals, Inc.
Resumo:
It is accepted that ventilator-associated pneumonia is a frequent cause of morbidity and mortality in intensive care patients. This study describes the physicochemical properties of novel surfactant coatings of the endotracheal tube and the resistance to microbial adherence of surfactant coated endotracheal tube polyvinylchloride (PVC). Organic solutions of surfactants containing a range of ratios of cholesterol and lecithin (0:100, 25:75, 50:50, 75:25, dissolved in dichloromethane) were prepared and coated onto endotracheal tube PVC using a multiple dip-coating process. Using modulated temperature differential scanning calorimetry it was confirmed that the binary surfactant systems existed as physical mixtures. The surface properties of both surfactant-coated and uncoated PVC, following treatment with either pooled human saliva or phosphate-buffered saline (PBS), were characterised using dynamic contact angle analysis. Following treatment with saliva, the contact angles of PVC decreased; however, those of the coated biomaterials were unaffected, indicating different rates and extents of macromolecular adsorption from saliva onto the coated and uncoated PVC. The advancing and receding contact angles of the surfactant-coated PVC were unaffected by sonication, thereby providing evidence of the durability of the coatings. The cell surface hydrophobicity and zeta potentials of isolates of Staphylococcus aureus and Pseudomonas aeruginosa, following treatment with either saliva or PBS, and their adherence to uncoated and surfactant-coated PVC (that had been pre-treated with saliva) were examined. Adherence of S. aureus and Ps. aeruginosa to surfactant-coated PVC at each successive time period (0.5, 1, 2, 4, 8 h) was significantly lower than to uncoated PVC, the extent of the reduction frequently exceeding 90%. Interestingly, the microbial anti-adherent properties of the coatings were dependent on the lecithin content. Based on the impressive microbial anti-adherence properties and durability of the surfactant coating on PVC following dip coatings, it is proposed that these systems may usefully reduce the incidence of ventilator-associated pneumonia when employed as luminal coatings of the endotracheal tube.