113 resultados para 311-U1326D
An exploratory non-LTE model atmosphere analysis of B-type supergiants in the Small Magellanic Cloud
Resumo:
A preliminary differential non-LTE model atmosphere analysis of moderate resolution (R ~ 5 000) and signal-to-noise ratio spectra of 48 Small Magellanic Cloud B-type supergiants is presented. Standard techniques are adopted, viz. plane-parallel geometry and radiative and hydrostatic equilibrium. Spectroscopic atmospheric parameters (T_eff, log g and v_turb), luminosities and chemical abundances (He, C, N, O, Mg and Si) are estimated. These are compared with those deduced for a comparable sample of Galactic supergiants. The SMC targets appear to have similar atmospheric parameters, luminosities and helium abundances to the Galactic sample. Their magnesium and silicon underabundances are compatible with those found for main sequence SMC objects and there is no evidence for any large variation in their oxygen abundances. By contrast both their carbon and nitrogen lines strengths are inconsistent with single abundances, while their nitrogen to carbon abundance ratios appear to vary by at least as much and probably more than that found in the Galactic sample.
Resumo:
Uranium-containing precipitates have been observed in a dolomitic gravel fill near the Department of Energy (DOE) S-3 Ponds former waste disposal site as a result of exposure to acidic (pH 3.4) groundwater contaminated with U (33 mg L-1), Al3+ (900 mg L-1), and NO3- (14?000 mg L-1). The U containing precipitates fluoresce a bright green under ultraviolet (UV) short-wave light which identify U-rich coatings on the gravel. Scanning electron microscopy (SEM) microprobe analysis show U concentration ranges from 1.6-19.8% (average of 7%) within the coatings with higher concentrations at the interface of the dolomite fragments. X-ray absorption near edge structure spectroscopy (XANES) indicate that the U is hexavalent and extended X-ray absorption fine structure spectroscopy (EXAFS) shows that the uranyl is coordinated by carbonate. The exact nature of the uranyl carbonates are difficult to determine, but some are best described by a split K+-like shell similar to grimselite [K4Na(UO2)(CO3)3·H2O] and other regions are better described by a single Ca2+-like shell similar to liebigite [Ca2(UO2)(CO3)3·11(H2O)] or andersonite [Na2CaUO2(CO3)3 · 6H2O]. The U precipitates are found in the form of white to light yellow cracked-formations as coatings on the dolomite gravel and as detached individual precipitates, and are associated with amorphous basalumnite [Al4(SO4)(OH)10·4H2O].
Resumo:
A new generation of water soluble tetrazolium salts have recently become available and in this study we compared a colorimetric assay developed using one of these salts, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8), with a previously developed 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide(XTT) colorimetric assay to determine which agent is most suitable for use as a colorimetric indicator in susceptibility testing. The MICs of 6 antibiotics were determined for 33 staphylococci using both colorimetric assays and compared with those obtained using the British Society for Antimicrobial Chemotherapy reference broth microdilution method. Absolute categorical agreement between the reference and test methods ranged from 79% (cefuroxime) to 100% (vancomycin) for both assays. No minor or major errors occurred using either assay with very major errors ranging from zero (vancomycin) to seven (cefuroxime). Analysis of the distribution of differences in the 1092 dilution MIC results revealed overall agreement, within the accuracy limits of the standard test ( 1 1092 dilution), using the XTT and WST-8 assays of 98% and 88%, respectively. Further studies on 31 ESBL-producing isolates were performed using the XTT method with absolute categorical agreement ranging from 87% (nitrofurantoin) to 100% (ofloxacin and meropenem). No errors were noted for either ofloxacin or meropenem with overall agreement of 91%. The data suggests that XTT is more reliable and accurate than WST-8 for use in a rapid antimicrobial susceptibility test. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
ß-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a biological and positional candidate gene for Alzheimer’s disease (AD). BACE1 is a protease that catalyses APP cleavage at the ß-secretase site. We evaluated all common and putatively functional polymorphisms in the genomic region encompassing BACE1 for an association with AD, and for functional effects on platelet ß-secretase activity. Tag SNPs (n = 10) derived from phase II of the International HapMap Project, and a nonsynonymous variant, were successfully genotyped in 901 Caucasian individuals from Northern Ireland using Sequenom iPLEX and TaqMan technologies. APOE genotyping was performed by PCR-RFLP. Platelet membrane ß-secretase activity was assayed in a subset of individuals (n = 311). Hardy–Weinberg equilibrium was observed for all variants. Evidence for an association with AD was observed with multi-marker haplotype analyses (P = 0.01), and with rs676134 when stratified for APOE genotype (P = 0.02), however adjusting for multiple testing negated the evidence for association of this variant with AD. ?2 analysis of genotype and allele frequencies in cases versus controls for individual SNPs revealed no evidence for association (5% level). No genetic factors were observed that significantly influenced platelet membrane ß-secretase activity. We have selected an appropriate subset of variants suitable for comprehensive genetic investigation of the BACE1 gene. Our results suggest that common BACE1 polymorphisms and putatively functional variants have no significant influence on genetic susceptibility to AD, or platelet ß-secretase activity, in this Caucasian Northern Irish population.
Resumo:
The electrochemical oxidation of 1-butyl-3-methylimidazolium iodide, [C(4)mim]I, has been investigated by cyclic voltammetry at a platinum microelectrode at varying concentrations in the RTIL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(4)mim][NTf2]. Two oxidation peaks were observed. The first peak is assigned to the oxidation of iodide to triiodide, in an overall two-electron process: 3I(-)- 2e(-) -> I-3(-). At higher potentials, the electrogenerated triiodide oxidizes to iodine, in an overall one-electron process: I-3(-) - e(-) -> 3/2I(2). An average diffusion coefficient, D, for I- of 1.55 x 10(-11) m(2) s(-1) was obtained. A digital simulation program was used to simulate the voltammetric response, and kinetic parameters were successfully extracted. The parameters deduced from the simulation include D for I-, I-3(-), and I-2 and K-eq,K-2, the equilibrium constant for the reaction of iodide and iodine to form triiodide. Values for these parameters are of the same order as those previously published for the oxidation of Br- in the same RTIL [Allen et al. J. Electroanal. Chem. 2005, 575, 311]. Next, the cyclic voltammetry of five different inorganic iodide salts was studied by dissolving small amounts of the solid in [C(4)mim][NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 0.55, 1.14, 1.23, 1.44, and 1.33 x 10(-11) m(2) s(-1) and solubilities of 714, 246, 54, 83, and 36 mM for LiI, NaI, KI, RbI, and CsI, respectively. The slightly smaller diffusion coefficients for the XI salts (compared to [C(4)mim]I) may indicate that I- is ion-paired with Li+, Na+, K+, Rb+, and Cs+ in the RTIL medium.
Resumo:
CO multipulse temporal analysis of products (TAP) experiments were used to characterize a ceria-supported platinum catalyst after various oxidative and reductive pretreatments using O-2, H2O, CO2, and H-2. Based on the amount of CO consumed, using the final CO-saturated catalyst composition as the common state point, the oxidatively pretreated catalyst could be described using a general scale. From a kinetic analysis of the CO multipulse responses, two kinetic regimes corresponding to two types of active sites could be identified. As the temperature was raised, the number of the most active sites did not change while the amount of the less active site increased. Comparison of the number of active sites determined from the TAP data reported herein with that determined by a previous steady-state isotope transient kinetic analysis experiment showed excellent agreement. This correlation indicates that the (very fast response) TAP experiments can provide information regarding the number and type of active sites that are relevant to a catalyst under real reaction conditions. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C(4)mim][NTf2]), and the conventional aprotic solvent. acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim(R) was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion: 2Br(-) --> Br-2 + 2e(-)