36 resultados para 29Si MAS NMR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dyes Nile Blue (C I Basic Blue 12) and Thionine (C I 52000) were examined in both ionic and neutral forms in different solvents using NMR and UV-visible spectroscopy to firmly establish the structures of the molecules and to assess the nature and extent of their aggregation H-1 and C-13 NMR assignments and chemical shift data were used together with nuclear Overhauser effect information to propose a self-assembly structure These data were supplemented with variable temperature dilution and diffusion-based experimental results using H-1 NMR spectroscopy thereby enabling extended aggregate structures to be assessed in terms of the relative strength of self-association and the extent to which extended aggregates could form (C) 2010 Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study on the transport properties through conductivity (s), viscosity (?), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids—pyrrolidinium hydrogen sulfate, [Pyrr][HSO4], and pyrrolidinium trifluoroacetate, [Pyrr][CF3COO]—and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes–Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H3O+. This water weight fraction appears to be the solvation limit of the H+ ions by water molecules in these two PILs solutions. However, [Pyrr][HSO4] and [Pyrr][CF3COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF3COO], ?, s, D, and the attractive potential, Epot, between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO4], the strong H-bond between the HSO4– anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm–1 for water weight fraction close to 60% at 298 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of growth-promoter use in animal production systems still proves to be an analytical challenge despite years of activity in the field. This study reports on the capability of NMR metabolomic profiling techniques to discriminate between plasma samples obtained from cattle treated with different groups of growth-promoting hormones (dexamethasone, prednisolone, oestradiol) based on recorded metabolite profiles. Two methods of NMR analysis were investigated—a Carr–Purcell–Meiboom–Gill (CPMG)-pulse sequence technique and a conventional 1H NMR method using pre-extracted plasma. Using the CPMG method, 17 distinct metabolites could be identified from the spectra. 1H NMR analysis of extracted plasma facilitated identification of 23 metabolites—six more than the alternative method and all within the aromatic region. Multivariate statistical analysis of acquired data from both forms of NMR analysis separated the plasma metabolite profiles into distinct sample cluster sets representative of the different animal study groups. Samples from both sets of corticosteroid-treated animals—dexamethasone and prednisolone—were found to be clustered relatively closely and had similar alterations to identified metabolite panels. Distinctive metabolite profiles, different from those observed within plasma from corticosteroid-treated animal plasma, were observed in oestradiol-treated animals and samples from these animals formed a cluster spatially isolated from control animal plasma samples. These findings suggest the potential use of NMR methodologies of plasma metabolite analysis as a high-throughput screening technique to aid detection of growth promoter use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incubation of the model pollutant [U-14C]'-4-fluorobiphenyl (4FBP) in soil, in the presence and absence of biphenyl (a co-substrate), was carried out in order to study the qualitative disposition and fate of the compound using 14C-HPLC and 19F NMR spectroscopy. Components accounted for using the radiolabel were volatilization, CO2 evolution, organic solvent extractable and bound residue. Quantitative analysis of these data gave a complete mass balance. After sample preparation. 14C-HPLC was used to establish the number of 4FBP related components present in the organic solvent extract. 19F NMR was also used to quantify the organic extracts and to identify the components of the extract. Both approaches showed that the composition of the solvent extractable fractions comprised only parent compound with no metabolites present. As the 14C radiolabel was found to be incorporated into the soil organic matter this indicates that metabolites were being generated, but were highly transitory as incorporation into the SOM was rapid. The inclusion of the co-substrate biphenyl was to increase the overall rate of degradation of 4FBP in soil. The kinetics of disappearance of parent from the soil using the data obtained were investigated from both techniques. This is the first report describing the degradation of a fluorinated biphenyl in soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single oxides of Ti and Zr incorporated SBA-15 were prepared and characterized by N-2 adsorption, NMR, and XPS techniques. Si-29 MAS NMR results suggest the formation of Si-O-X linkages (X: Ti or Zr) by an increase in the ratio of Q(3)/Q(4) in the presence of Ti or Zr. XPS analysis of Ti-SBA-15 catalysts indicate the presence of Ti-O-Si bonds in addition to Ti-O-Ti and Si-O-Si bonds, supporting the NMR evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to prepare high surface area highly acidic catalysts, different weight loadings of ZrO2 were incorporated in the SBA-15 structures which are subsequently sulfated by treating in 0.25 M H2SO4. The catalysts were characterized by means of TEM, XRD, N-2 adsorption, and H-1 MAS NMR. Bronsted type acidities of sulfated zirconia included SBA-15 materials were identified by a sharp H-1 MAS NMR line at 10.6 ppm. The highest acidity was obtained in the 25 mol% ZrO2 included SBA-15 catalyst with a BET surface area of 246 m(2)/g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer (Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for
the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further
emphasizes the superior phytonutrient composition of the aleurone layer.
INTRODUCTION
Wheat is a valuable source of betaine, choline (1, 2), B
vitamins, vitamin E, and a number of minerals, including iron,
zinc, magnesium, and phosphorus (3). Epidemiological studies
indicate that whole-grain consumption is protective against
several chronic diseases (4-12). It has not been fully elucidated
how whole-grain cereals or specific fractions (13) exert their
protective effect, but it is thought to be due to their content of
several nutrients associated with the reduced risk of disease.
Conventionally, whole grain is separated during milling into
bran, germ, and flour (14). The nutrient composition of these
fractions differ markedly; refined wheat flour contains approximately
50% less vitamins and minerals than whole-grain
flour (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral thioureas and functionalised chiral thiouronium salts were synthesised starting from the relatively cheap and easily available chiral amines: (S)-methylbenzylamine and rosin-derived (+)-dehydroabietylamine. The introduction of a delocalised positive charge to the thiourea functionality, by an alkylation reaction at the sulfur atom, enables dynamic rotameric processes: hindered rotations about the delocalised CN and CS bonds. Hence, four different rotamers/isomers may be recognised: syn-syn, syn-anti, anti-syn and anti-anti. Extensive H-1 and C-13 NMR studies have shown that in hydrogen-bond acceptor solvents, such as perdeuteriated dimethyl sulfoxide, the syn-syn conformation is preferable. On the other hand, when using non-polar solvents, such as CDCl3, the mixture of syn-syn and syn-anti isomers is detectable, with an excess of the latter. Apart from this, in the case of S-butyl-N,N'-bis(dehydroabietyl)thiouronium ethanoate in CDCl3, the H-1 NMR spectrum revealed that strong bifurcated hydrogen bonding between the anion and the cation causes global rigidity without signs of hindered rotamerism observable on the NMR time scale. This suggested that these new salts might be used as NMR discriminating agents for chiral oxoanions, and are indeed more effective than their archetypal guanidinium analogues or the neutral thioureas. The best results in recognition of a model substrate, mandelate, were obtained with S-butyl-N,N'-bis(dehydroabietyl) thiouronium bistriflamide. It was confirmed that the chiral recognition occurred not only for carboxylates but also for sulfonates and phosphonates. Further H-1 NMR studies confirmed a 1 : 1 recognition mode between the chiral agent (host) and the substrate (guest); binding constants were determined by H-1 NMR titrations in solutions of DMSO-d(6) in CDCl3. It was also found that the anion of the thiouronium salt had a significant influence on the recognition process: anions with poor hydrogen-bond acceptor abilities led to the best discrimination. The presence of host-guest hydrogen bonding was confirmed in the X-ray crystal structure of S-butyl-N,N'-bis(dehydroabietyl)thiouronium bromide and by computational studies (density functional theory).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The VADT was a randomized clinical trial designed to assess the effect of intensive vs. standard glucose management on cardiovascular events in Type 2 diabetes. At the end of the study, intensive management failed to improve outcomes. We performed plasma lipoprotein subclass analyses to yield new information on the effects of study randomization on cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this work a comparative study on density and transport properties, such as the conductivity (sigma), viscosity (eta) and self-diffusion coefficients (D), for electrolytes based on the lithium hexafluorophosphate, LiPF6; or on the lithium tris(pentafluoroethane)-trifluorophosphate, LiFAP dissolved in a binary mixture of ethylene carbonate (EC) and dimethylcarbonate (DMC) (50:50 wt%). For each electrolyte, the temperature dependence on transport properties over a temperature range from 10 to 80 degrees C and 20 to 70 degrees C for viscosity and conductivity, respectively, exhibits a non-Arrhenius behavior. However, this dependence is correctly correlated by using the Vogel-Tamman-Fulcher (VTF) type fitting equation. In each case, the best-fit parameters, such as the pseudo activation energy and ideal glass transition temperature were then extracted. The self-diffusion coefficients (D) of the Li+ cation and PF6- or FAP(-) anions species, in each studied electrolyte, were then independently determined by observing Li-3, F-19 and P-31 nuclei with the pulsed-gradient spin-echo (PGSE) NMR technique over the same temperature range from 20 to 80 degrees C. Results show that even if the diffusion of the lithium cation is quite similar in both electrolytes, the anions diffusion differs notably. In the case of the LiPF6-based electrolyte, for example at T approximate to 75 degrees C (high temperature), the self-diffusion coefficients of Li+ cations in solution (D (Li+)approximate to 5 x 10(-19) m(2) s(-1)) is 1.6 times smaller than that of PF6- anions (D (PF6-) = 8.5 x 10(-19) m(2) s(-1)), whereas in the case of the LiFAP-based electrolyte, FAP(-) anions diffuse at same rate as the Li+ cations (D (FAP(-)) = 5 x 10(-1) m(2) s(-1)). Based on these experimental results, the transport mobility of ions were then investigated through Stokes-Einstein and Nernst-Einstein equations to determine the transport number of lithium t(Li)(+), effective radius of solvated Li+ and of PF6- and FAP(-) anions, and the degree of dissociation of these lithium salts in the selected EC/DMC (50:50 wt%) mixture over a the temperature range from 20 to 80 degrees C. This study demonstrates the conflicting nature of the requirements and the advantage of the well-balanced properties as ionic mobility and dissociation constant of the selected electrolytes. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR was used to study the semiconductor photocatalytic (SPC) CC coupling of phenoxyacetic acid (PAA) with acrylamide (ACM) in an NMR tube photoreactor. Using an NMR tube with a sol-gel titania inner coating as a photoreactor, this reaction is relatively clean, forming only 1 product, 4-phenoxybutanamide (4-PB), in yields up to 78%. This SPC reaction is used to assess the activity of the sol-gel titania coating as a function of their annealing temperature, which alters the surface area and phase of the titania, and the general reusability of the TiO coated NMR tubes. The optimum temperature range for annealing the sol-gel titania films is between 450 °C and 800 °C, with the maximum yield and rate attained at 450 °C. Despite a decrease in the initial rates of formation of 4-PB above an annealing temperature of 450 °C, the final product yields remained similar, giving maximum yields within 60 min of irradiation. The reusability study reveals that the activity of the sol-gel titania can quickly deteriorate with repeated use due to the adsorption of yellow/brown coloured, insoluble, most likely organic polymeric, material and its screening effect on the underlying photocatalyst. The titania can, however, be restored to its original activity by a simple heat treatment at 450 °C for 30 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain tissue from so-called Alzheimer's disease (AD) mouse models has previously been examined using H-1 NMR-metabolomics, but comparable information concerning human AD is negligible. Since no animal model recapitulates all the features of human AD we undertook the first H-1 NMR-metabolomics investigation of human AD brain tissue. Human post-mortem tissue from 15 AD subjects and 15 age-matched controls was prepared for analysis through a series of lyophilised, milling, extraction and randomisation steps and samples were analysed using H-1 NMR. Using partial least squares discriminant analysis, a model was built using data obtained from brain extracts. Analysis of brain extracts led to the elucidation of 24 metabolites. Significant elevations in brain alanine (15.4 %) and taurine (18.9 %) were observed in AD patients (p ≤ 0.05). Pathway topology analysis implicated either dysregulation of taurine and hypotaurine metabolism or alanine, aspartate and glutamate metabolism. Furthermore, screening of metabolites for AD biomarkers demonstrated that individual metabolites weakly discriminated cases of AD [receiver operating characteristic (ROC) AUC <0.67; p < 0.05]. However, paired metabolites ratios (e.g. alanine/carnitine) were more powerful discriminating tools (ROC AUC = 0.76; p < 0.01). This study further demonstrates the potential of metabolomics for elucidating the underlying biochemistry and to help identify AD in patients attending the memory clinic