83 resultados para 290603 Membrane and Separation Technologies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predatory Bdellovibrio bacteriovorus bacteria are remarkable in that they attach to, penetrate and digest other Gram-negative bacteria, living and replicating within them until all resources are exhausted, when they escape the prey ghost to invade fresh prey. Remarkable remodeling of both predator and prey cell occurs during this process to allow the Bdellovibrio to exploit the intracellular niche they have worked so hard to enter, keeping the prey "bdelloplast" intact until the end of predatory growth. If one views motile non-predatory bacteria in a light microscope, one is immediately struck by how rare it is for bacteria to collide. This highlights how the cell surface of Bdellovibrio must be specialized and adapted to allow productive collisions and further to allow entry into the prey periplasm and subsequent secretion of hydrolytic enzymes to digest it. Bdellovibrio can, however, also be made to grow artificially without prey; thus, they have a large genome containing both predatory genes and genes for saprophytic heterotrophic growth. Thus, the membrane and outer surface layers are a patchwork of proteins encompassing not only those that have a sole purpose in heterotrophic growth but also many more that are specialized or employed to attach to, enter, remodel, kill and ultimately digest prey cells. There is much that is as yet not understood, but molecular genetic and post-genomic approaches to microbial physiology have enhanced the pioneering biochemical work of four decades ago in characterizing some of the key events and surface protein requirements for prey attack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature ceramic membranes have interesting possibilities for application in areas of new and developing technologies such as hydrocarbon combustion with carbon dioxide capture and electrochemical promotion of catalysis (EPOC). However, membrane module sealing remains a significant technical challenge. In this work a borosilicate glass sealant (50SiO2·25B2O3·25Na2O, mol%) was developed to fit the requirements of sealing an air separation membrane system at intermediate temperatures (300-600 °C). The seal was assessed by testing the leak rates under a range of conditions. The parameters tested included the effect of flowrate on the leak rate, the heating and cooling rates of the reactor and the range of temperatures under which the system could operate. Tests for durability and reliability were also performed. It was found that the most favourable reactor configuration employed a reactor with the ceramic pellet placed underneath the inner chamber alumina tube (inverted configuration), using a quartz wool support to keep the membrane in place prior to sealing. Using this configuration the new glass-based seal was found to be a more suitable sealant than traditional alternatives; it produced lower leak rates at all desirable flowrates, with the potential for rapid heating and cooling and multiple cycling, allowing for prolonged usage. © 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air 13C/12C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl2F2) and CFC-113 (C2Cl3F3). Significant, but consistent, isotopic shifts of -27.5 to -25.6 do occur within the system for CFC-11 (CCl3F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (10 L). Representative urban air analyses from Belfast City are also presented which give carbon isotope results similar to published values for 13C/12C analysis of MeCl (-39.1) and CFC-113 (-28.1). However, this is the first paper reporting stable carbon isotope signatures for CFC-11 (-29.4) and CFC-12 (-37.0).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ß-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a biological and positional candidate gene for Alzheimer’s disease (AD). BACE1 is a protease that catalyses APP cleavage at the ß-secretase site. We evaluated all common and putatively functional polymorphisms in the genomic region encompassing BACE1 for an association with AD, and for functional effects on platelet ß-secretase activity. Tag SNPs (n = 10) derived from phase II of the International HapMap Project, and a nonsynonymous variant, were successfully genotyped in 901 Caucasian individuals from Northern Ireland using Sequenom iPLEX and TaqMan technologies. APOE genotyping was performed by PCR-RFLP. Platelet membrane ß-secretase activity was assayed in a subset of individuals (n = 311). Hardy–Weinberg equilibrium was observed for all variants. Evidence for an association with AD was observed with multi-marker haplotype analyses (P = 0.01), and with rs676134 when stratified for APOE genotype (P = 0.02), however adjusting for multiple testing negated the evidence for association of this variant with AD. ?2 analysis of genotype and allele frequencies in cases versus controls for individual SNPs revealed no evidence for association (5% level). No genetic factors were observed that significantly influenced platelet membrane ß-secretase activity. We have selected an appropriate subset of variants suitable for comprehensive genetic investigation of the BACE1 gene. Our results suggest that common BACE1 polymorphisms and putatively functional variants have no significant influence on genetic susceptibility to AD, or platelet ß-secretase activity, in this Caucasian Northern Irish population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of beta-amyloid peptides (A beta), which are proposed to drive the pathological changes found in Alzheimer's disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (beta-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulates BACE1 expression. The present study investigated whether there was any association between genetic variation in RTN3 and PPIL2, and either risk for AD, or levels of platelet beta-secretase activity, in a large Northern Irish case-control sample. Four hundred and sixty-nine patients with a diagnosis of probable AD (NINCDS-ADRDA criteria) and 347 control individuals (MMSE > 28/30) were genotyped. SNPs in both genes were selected by downloading genotype data from the International HapMap Project (Phase II) and tags selected using multimarker approach in Haploview, where r (2) > 0.8 and LOD > 3.0. Non-synonymous SNPs of interest were also included. Genotyping was performed by Sequenom iPLEX and TaqMan technologies. Alleles, genotypes and multi-marker haplotypes were tested for association with AD, and platelet beta-secretase activities were measured for a subset of individuals (n = 231). Eight SNPs in RTN3 and 7 in PPIL2 were genotyped. We found no significant associations between allele, genotype or haplotype frequencies and risk of AD. Further, there was no effect of genotype on platelet membrane beta-secretase activity. We conclude that common or potentially functional genetic variation in these BACE1 interacting proteins does not affect platelet membrane beta-secretase activity or contribute to risk of AD in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging of the human retina is characterized by progressive pathology, which can lead to vision loss. This progression is believed to involve reactive metabolic intermediates reacting with constituents of Bruch's membrane, significantly altering its physiochemical nature and function. We aimed to replace a myriad of techniques following these changes with one, Raman spectroscopy. We used multiplexed Raman spectroscopy to analyze the age-related changes in 7 proteins, 3 lipids, and 8 advanced glycation/lipoxidation endproducts (AGEs/ALEs) in 63 postmortem human donors. We provided an important database for Raman spectra from a broad range of AGEs and ALEs, each with a characteristic fingerprint. Many of these adducts were shown for the first time in human Bruch's membrane and are significantly associated with aging. The study also introduced the previously unreported up-regulation of heme during aging of Bruch's membrane, which is associated with AGE/ALE formation. Selection of donors ranged from ages 32 to 92 yr. We demonstrated that Raman spectroscopy can identify and quantify age-related changes in a single nondestructive measurement, with potential to measure age-related changes in vivo. We present the first directly recorded evidence of the key role of heme in AGE/ALE formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3-]o. Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pHo of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+]o. These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane, and implicate a carrier cycle in which NO3- binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3- transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3- transport; finally, they distinguish metabolite repression of NO3- transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3 - challenge and to quantify transport activity. The NO3 --associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3 --free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 μM NO3 -. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity mensurable approx. 100 min after first exposure to NO3 -; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3 - additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 μM NO3 -; and it was suppressed when NH4 +, was present during the first, inductive exposure to NO3 -. Voltage clamp measurements carried out immediately before and following NO3 - additions showed that the NO3 --evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages -400 to +100 mV). Measurements of NO3 - uptake using NO3 --selective macroelectrodes indicated a charge stoichiometry for NO3 - transport of 1(+):1(NO3 -) with common K(m) and J(max) values around 25 μM and 75 pmol NO3 - cm-2sec-1, respectively, and combined measurements of pH(o) and [NO3 -](o) showed a net uptake of approx. 1 H+ with each NO3 - anion. Analysis of the NO3 - current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pH(o) and [NO3 -](o). Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pH(o) of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3 -. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+](o). These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO anion transported across the membrane, and implicate a carrier cycle in which NO binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3 - transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3 - transport; finally, they distinguish metabolite repression of NO3 - transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic demixing and decomposition were studied on three La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen-separation hollow fibre membrane modules, which were operated under a 0.21/0.009bar oxygen partial pressure difference at 950°C for 1128, 3672 and 5512h, respectively. The post-operation membranes were characterized by Secondary Ion Mass Spectrometry, Scanning Electronic Microscope, Energy Dispersive Spectrum and X-ray Diffraction. The occurrence of kinetic demixing and decomposition was confirmed through the microstructural evolution of the membranes. Secondary-phase grains were found on the air-side surface of the membranes after the long-term operation and Co and Fe enrichment as well as La depletion was found on the surface and in the bulk at the air side. Cation diffusivities were found to be in the order Co>Fe>Sr>La. Kinetic demixing and decomposition rates of the membranes at the air side were found to be self-accelerating with time; the role of A-site deficiency in the perovskite lattice in the bulk near the air side surface is implicated in the mechanism. The oxygen permeability was not affected by the kinetic demixing and decomposition of the material during long-term operation (up to 5512h), however, we may expect permeability to be affected by secondary phase formation on the air-side surface at even longer operational times. © 2010 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumer studies and market reports show an increase in consumption of ready-to-eat (RTE) foods. Although conventional processing technologies can in most cases produce safe products, they can also lead to the degradation of nutritional compounds and negatively affect quality characteristics. Consumers strongly prefer food that is minimally processed with the maximum amount of health-promoting substances. Novel processing technologies as pre- or post-treatment decontamination methods or as substitutes of conventional technologies have the potential to produce foods that are safe, rich in nutrient content and with superior organoleptic properties. Combining novel with conventional processes can eliminate potential drawbacks of novel technologies. This review examines available scientific information and critically evaluates the suitability and efficiency of various novel thermal and nonthermal technologies in terms of microbial safety, quality as well as nutrient content on the production of RTE meals, meats and pumpable products.