97 resultados para 240302 Nuclear and Particle Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate near-threshold bound states and Feshbach resonance positions for atom–rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J=0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J>0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J=0) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the derivation of a kinetic equation for a charged test particle weakly interacting with an electrostatic plasma in thermal equilibrium, subject to a uniform external magnetic field. The Liouville equation leads to a generalized master equation to second order in the `weak' interaction; a Fokker-Planck-type equation then follows as a `Markovian' approximation. It is shown that such an equation does not preserve the positivity of the distribution function f(x,v;t). By applying techniques developed in the theory of open systems, a correct Fokker-Planck equation is derived. Explicit expressions for the diffusion and drift coefficients, depending on the magnetic field, are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By contrast to the Target Normal Sheath acceleration (TNSA) mechanism [1], Radiation Pressure Acceleration (RPA) is currently attracting a substantial amount of experimental [2,3] and theoretical [4-6] attention worldwide due to its superior scaling in terms of ion energy and laser-ion conversion efficiency. Employing Vulcan Petawatt lasers of the Rutherford Appleton Laboratory, UK, both the Hole-boring (HB) and the Light-Sail (LS) regimes of the RPA have been extensively explored. When the target thickness is of the order of hole-boring velocity times the laser pulse duration, highly collimated plasma jets of near solid density are ejected from the foil, lasting up to ns after the laser interaction. By changing the linear polarisation of the laser to circular, improved homogeneity in the jet's spatial density profile is achieved which suggests more uniform and sustained radiation pressure drive on target ions. By decreasing the target areal density or increasing irradiance on the target, the LS regime of the RPA is accessed where relatively high flux (~ 1012 particles/MeV/Sr) of ions are accelerated to ~ 10 MeV/nucleon energies in a narrow energy bandwidth. The ion energy scaling obtained from the parametric scans agrees well with theoretical estimation based on RPA mechanism and the narrow bandwidth feature in the ion spectra is studied by 2D particle-in-simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological effectiveness of laser driven protons on cells at high dose rate in a single exposure has been studied. V79 cell lines were irradiated with laser driven protons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates for fine-structure transitions in nickel ions (Ni XIII-XVI) have been calculated using the GRASP code. Configuration interaction and relativistic effects have been included, and comparisons are made with available data. Energy levels and radiative rates are tabulated for transitions among the 48, 43, 32, and 84 levels of Ni XIII, Ni XIV, Ni XV, and Ni XVI, respectively. The energy levels are assessed to be accurate to better than 5% for a majority of levels, while oscillator strengths for all strong transitions are accurate to better than 20%. (C) 2003 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Joint quantum measurements of noncommuting observables are possible, if one accepts an increase in the measured variances. A necessary condition for a joint measurement to be possible is that a joint probability distribution exists for the measurement. This fact suggests that there may be a link with Bell inequalities, as these will be satisfied if and only if a joint probability distribution for all involved observables exists. We investigate the connections between Bell inequalities and conditions for joint quantum measurements to be possible. Mermin's inequality for the three-particle Greenberger-Horne-Zeilinger state turns out to be equivalent to the condition for a joint measurement on two out of the three quantum systems to exist. Gisin's Bell inequality for three coplanar measurement directions, meanwhile, is shown to be less strict than the condition for the corresponding joint measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scattering of electrons with kinetic energies down to a few meV by para-xylene and para-difluorobenzene has been observed experimentally with an electron beam energy resolution of 0.95 to 1.5 meV (full width half maximum). At low electron energies the collisions can be considered as cold scattering events because the de Broglie wavelength of the electron is considerably larger than the target dimensions. The scattering cross sections measured rise rapidly at low energy due to virtual state scattering. The nature of this scattering process is discussed using s- and p-wave phase shifts derived from the experimental data. Scattering lengths are derived of, respectively, -9.5+/-0.5 and -8.0+/-0.5 a.u. for para-xylene and para-difluorobenzene. The virtual state effect is interpreted in terms of nuclear diabatic and partially adiabatic models, involving the electronic and vibronic symmetries of the unoccupied orbitals in the target species. The concept of direct and indirect virtual state scattering is introduced, through which the present species, in common with carbon dioxide and benzene, scatter through an indirect virtual state process, whereas other species, such as perfluorobenzene, scatter through a direct process. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.