17 resultados para 13200-077


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Stereotactic ablative radiotherapy (SABR) has become standard for inoperable early-stage non-small cell lung cancer (NSCLC). However, there is no randomized evidence demonstrating benefit over more fractionated radiotherapy. We compared accelerated hypofractionation (AH) and SABR using a propensity score-matched analysis.

MATERIALS AND METHODS: From 1997-2007, 119 patients (T1-3N0M0 NSCLC) were treated with AH (48-60Gy, 12-15 fractions). Prior to SABR, this represented our institutional standard. From 2008-2012, 192 patients (T1-3N0M0 NSCLC) were treated with SABR (48-52Gy, 4-5 fractions). A total of 114 patients (57 per cohort) were matched (1:1 ratio, caliper: 0.10) using propensity scores.

RESULTS: Median follow-up (range) for the AH cohort was 36.3 (2.5-109.1) months, while that for the SABR group was 32.5 (0.3-62.6)months. Three-year overall survival (OS) and local control (LC) rates were 49.5% vs. 72.4% [p=0.024; hazard ratio (HR): 2.33 (1.28, 4.23), p=0.006] and 71.9% vs. 89.3% [p=0.077; HR: 5.56 (1.53, 20.2), p=0.009], respectively. On multivariable analysis, tumour diameter and PET staging were predictive for OS, while the only predictive factor for LC was treatment cohort.

CONCLUSIONS: OS and LC were improved with SABR, although OS is more closely related to non-treatment factors. This represents one of the few studies comparing AH to SABR for early-stage lung cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy.

However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved.

Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 1020 photons s−1mm−2mrad−2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.