70 resultados para 111203 Cancer Genetics
Resumo:
Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-kappaB (NF-kappaB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-kappaB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.
Resumo:
Using a validated tetracycline (tet)-regulated MCF7-founder (MCF7F) expression system to modulate expression of CD44 standard form (CD44s), we report the functional importance of CD44s and that of a novel transcriptional target of hyaluronan (HA)/CD44s signaling, EMS1/cortactin, in underpinning breast cancer metastasis. In functional experiments, tet-regulated induction of CD44s potentiated the migration and invasion of MCF7F cells through HA-supplemented Matrigel. EMS1/cortactin was identified by expression profiling as a novel transcriptional target of HA/CD44 signaling, an association validated by quantitative PCR and immunoblotting experiments in a range of breast cancer cell lines. The mechanistic basis underpinning CD44-promoted transcription of EMS1/cortactin was shown to be dependent upon a NFB mechanism, since pharmacological inhibition of IKinase-2 or suppression of p65 Rel A expression attenuated CD44-induced increases in cortactin mRNA transcript levels. Overexpression of a c-myc tagged murine cortactin construct in the weakly invasive, CD44-deficient MCF7F and T47D cells potentiated their invasion. Furthermore, the functional importance of cortactin to CD44s-promoted metastasis was demonstrated by selective suppression of cortactin in CD44-expressing MCF7F-B5 and MDA-MB-231 breast cancer cells using RNAi, which was shown to result in attenuated CD44-promoted invasion and CD44-promoted adhesion to bone marrow endothelial cells (BMECs).
Resumo:
Resistance to chemotherapy ('drug resistance') is a fundamental problem that limits the effectiveness of many chemotherapies currently used to treat cancer. Drug resistance can occur due to a variety of mechanisms, such as increased drug inactivation, drug efflux from cancer cells, enhanced repair of chemotherapy-induced damage, activation of pro-survival pathways and inactivation of cell death pathways. In this article, we review some of the major mechanisms of drug resistance and discuss how new molecularly-targeted therapies are being increasingly used to overcome these resistance mechanisms.
Resumo:
Death receptors can directly (type I cells) or indirectly induce apoptosis by activating mitochondrial-regulated apoptosis (type II cells). The level of caspase 8 activation is thought to determine whether a cell is type I or II, with type II cells less efficient at activating this caspase following death receptor activation. FLICE-inhibitory protein (FLIP) blocks death receptor-mediated apoptosis by inhibiting caspase 8 activation; therefore, we assessed whether silencing FLIP could convert type II cells into type I. FLIP silencing-induced caspase 8 activation in Bax wild-type and null HCT116 colorectal cancer cells; however, complete caspase 3 processing and apoptosis were only observed in Bax wild-type cells. Bax-null cells were also more resistant to chemotherapy and tumor necrosis factor-related apoptosis inducing ligand and, unlike the Bax wild-type cells, were not sensitized to these agents by FLIP silencing. Further analyses indicated that release of second mitochondrial activator of caspases from mitochondria and subsequent inhibition of X-linked inhibitor of apoptosis protein (XIAP) was required to induce full caspase 3 processing and apoptosis following FLIP silencing. These results indicate that silencing FLIP does not necessarily bypass the requirement for mitochondrial involvement in type II cells. Furthermore, targeting FLIP and XIAP may represent a therapeutic strategy for the treatment of colorectal tumors with defects in mitochondrial-regulated apoptosis.
Resumo:
BACKGROUND AIMS: Cell-based gene therapy is an alternative to viral and non-viral gene therapy. Emerging evidence suggests that mesenchymal stem cells (MSC) are able to migrate to sites of tissue injury and have immunosuppressive properties that may be useful in targeted gene therapy for sustained specific tissue engraftment. METHODS: In this study, we injected intravenously (i.v.) 1x10(6) MSC, isolated from green fluorescent protein (GFP) transgenic rats, into Rif-1 fibrosarcoma-bearing C3H/HeN mice. The MSC had been infected using a lentiviral vector to express stably the luciferase reporter gene (MSC-GFP-luci). An in vivo imaging system (IVIS 200) and Western blotting techniques were used to detect the distribution of MSC-GFP-luci in tumor-bearing animals. RESULTS: We observed that xenogenic MSC selectively migrated to the tumor site, proliferated and expressed the exogenous gene in subcutaneous fibrosarcoma transplants. No MSC distribution was detected in other organs, such as the liver, spleen, colon and kidney. We further showed that the FGF2/FGFR pathways may play a role in the directional movement of MSC to the Rif-1 fibrosarcoma. We performed in vitro co-culture and in vivo tumor growth analysis, showing that MSC did not affect the proliferation of Rif-1 cells and fibrosarcoma growth compared with an untreated control group. Finally, we demonstrated that the xenogenic MSC stably expressing inducible nitric oxide synthase (iNOS) protein transferred by a lentivirus-based system had a significant inhibitory effect on the growth of Rif-1 tumors compared with MSC alone and the non-treatment control group. CONCLUSIONS: iNOS delivered by genetically modified iNOS-MSC showed a significant anti-tumor effect both in vitro and in vivo. MSC may be used as a target gene delivery vehicle for the treatment of fibrosarcoma and other tumors