19 resultados para 1.º e 2.º Ciclos do Ensino Básico


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Obesity is increasingly prevalent in many countries. Obesity is a major risk factor for the development of type 2 diabetes but its relationship with diabetic kidney disease (DKD) remains unclear. Some studies have suggested that the metabolic syndrome (including obesity) may be associated with DKD in type 1 diabetes. Aim: To investigate the association between obesity and DKD. Design: Retrospective cross-sectional study. Methods: National Diabetes Audit data were available for the 2007–08 cycle. Type 1 and 2 diabetes patients with both a valid serum creatinine and urinary albumin:creatinine ratio were included. DKD was defined as an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2, albuminuria or both. Logistic regression was used to analyse associations of obesity (body mass index ≥30 kg/m2) and other variables including year of birth, year of diagnosis, ethnicity and stage of kidney disease. Results: A total of 58 791 type 1 and 733 769 type 2 diabetes patients were included in the analysis. After adjustment, when compared with type 1 diabetes patients with normal renal function those with DKD were up to twice as likely to be obese. Type 2 DKD patients were also more likely to be obese. For example, type 2 diabetes patients with an eGFR <15 ml/min/1.73 m2 and normoalbuminuria, microalbuminuria or macroalbuminuria were all more likely to be obese; odds ratios (95% CI) 1.65 (1.3–2.1), 1.56 (1.28–1.92) and 1.27 (1.05–1.54), respectively. Conclusions: This study has highlighted a strong association between obesity and kidney disease in type 1 diabetes and confirmed their association in type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aiming at inexpensive Brønsted-acidic ionic liquids, suitable for industrial-scale catalysis, a family of protonic ionic liquids based on nitrogen bases and sulfuric acid has been developed. Variation of the molar ratio of sulfuric acid, χH2SO4, was used to tune acidity. The liquid structure was studied using 1H NMR and IR spectroscopies, revealing the existence of hydrogen-bonded clusters, [(HSO4)(H2SO4)]−, for χH2SO4 > 0.50. Acidity, quantified by Gutmann Acceptor Number (AN), was found to be closely related to the liquid structure. The ionic liquids were employed as acid catalysts in a model reaction; Fischer esterification of acetic acid with 1-butanol. The reaction rate depended on two factors; for χH2SO4 > 0.50, the key parameter was acidity (expressed as AN value), while for χH2SO4 > 0.50 it was the mass transport (solubility of starting materials in the ionic liquid phase). Building on this insight, the ionic liquid catalyst and reaction conditions have been chosen. Conversion values of over 95% were achieved under exceptionally mild conditions, and using an inexpensive ionic liquid, which could be recycled up to eight times without diminution in conversion or selectivity. It has been demonstrated how structural studies can underpin rational design and development of an ionic liquid catalyst, and in turn lead to a both greener and economically viable process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The current study reports original vapour-liquid equilibrium (VLE) for the system {CO2 (1) + 1-chloropropane (2)}. The measurements have been performed over the entire pressure-composition range for the (303.15, 313.15 and 328.15) K isotherms. The values obtained have been used for comparison of four predictive approaches, namely the equation of state (EoS) of Peng and Robinson (PR), the Soave modification of Benedict–Webb–Rubin (SBWR) EoS, the Critical Point-based Revised Perturbed-Chain Association Fluid Theory (CP-PC-SAFT) EoS, and the Conductor-like Screening Model for Real Solvents (COSMO-RS). It has been demonstrated that the three EoS under consideration yield similar and qualitatively accurate predictions of VLE, which is not the case for the COSMO-RS model examined. Although CP-PC-SAFT EoS exhibits only minor superiority in comparison with PR and SBWR EoS in predicting VLE in the system under consideration, its relative complexity can be justified when taking into account the entire thermodynamic phase space and, in particular, considering the liquid densities and sound velocities over a wider pressure-volume-temperature range.