29 resultados para 010401 Applied Statistics
Resumo:
Summary statistics continue to play an important role in identifying and monitoring patterns and trends in educational inequalities between differing groups of pupils over time. However, this article argues that their uncritical use can also encourage the labelling of whole groups of pupils as ‘underachievers’ or ‘overachievers’ as the findings of group-level data are simply applied to individual group members, a practice commonly termed the ‘ecological fallacy’. Some of the adverse consequences of this will be outlined in relation to current debates concerning gender and ethnic differences in educational attainment. It will be argued that one way of countering this uncritical use of summary statistics and the ecological fallacy that it tends to encourage, is to make much more use of the principles and methods of what has been termed ‘exploratory data analysis’. Such an approach is illustrated through a secondary analysis of data from the Youth Cohort Study of England and Wales, focusing on gender and ethnic differences in educational attainment. It will be shown that, by placing an emphasis on the graphical display of data and on encouraging researchers to describe those data more qualitatively, such an approach represents an essential addition to the use of simple summary statistics and helps to avoid the limitations associated with them.
Resumo:
This paper introduces the application of linear multivariate statistical techniques, including partial least squares (PLS), canonical correlation analysis (CCA) and reduced rank regression (RRR), into the area of Systems Biology. This new approach aims to extract the important proteins embedded in complex signal transduction pathway models.The analysis is performed on a model of intracellular signalling along the janus-associated kinases/signal transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal transduction pathways in interleukin-6 (IL6) stimulated hepatocytes, which produce signal transducer and activator of transcription factor 3 (STAT3).A region of redundancy within the MAPK pathway that does not affect the STAT3 transcription was identified using CCA. This is the core finding of this analysis and cannot be obtained by inspecting the model by eye. In addition, RRR was found to isolate terms that do not significantly contribute to changes in protein concentrations, while the application of PLS does not provide such a detailed picture by virtue of its construction.This analysis has a similar objective to conventional model reduction techniques with the advantage of maintaining the meaning of the states prior to and after the reduction process. A significant model reduction is performed, with a marginal loss in accuracy, offering a more concise model while maintaining the main influencing factors on the STAT3 transcription.The findings offer a deeper understanding of the reaction terms involved, confirm the relevance of several proteins to the production of Acute Phase Proteins and complement existing findings regarding cross-talk between the two signalling pathways.
Resumo:
The stochastic nature of oil price fluctuations is investigated over a twelve-year period, borrowing feedback from an existing database (USA Energy Information Administration database, available online). We evaluate the scaling exponents of the fluctuations by employing different statistical analysis methods, namely rescaled range analysis (R/S), scale windowed variance analysis (SWV) and the generalized Hurst exponent (GH) method. Relying on the scaling exponents obtained, we apply a rescaling procedure to investigate the complex characteristics of the probability density functions (PDFs) dominating oil price fluctuations. It is found that PDFs exhibit scale invariance, and in fact collapse onto a single curve when increments are measured over microscales (typically less than 30 days). The time evolution of the distributions is well fitted by a Levy-type stable distribution. The relevance of a Levy distribution is made plausible by a simple model of nonlinear transfer. Our results also exhibit a degree of multifractality as the PDFs change and converge toward to a Gaussian distribution at the macroscales.
Integrating Multiple Point Statistics with Aerial Geophysical Data to assist Groundwater Flow Models
Resumo:
The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.