285 resultados para Vascular wall
Resumo:
AIMS: To determine the incidence and predictive factors of rib fracture and chest wall pain after lung stereotactic ablative radiotherapy (SABR).
MATERIALS AND METHODS: Patients were treated with lung SABR of 48-60 Gy in four to five fractions. The treatment plan and follow-up computed tomography scans of 289 tumours in 239 patients were reviewed. Dose-volume histogram (DVH) metrics and clinical factors were evaluated as potential predictors of chest wall toxicity.
RESULTS: The median follow-up was 21.0 months (range 6.2-52.1). Seventeen per cent (50/289) developed a rib fracture, 44% (22/50) were symptomatic; the median time to fracture was 16.4 months. On univariate analysis, female gender, osteoporosis, tumours adjacent (within 5 mm) to the chest wall and all of the chest wall DVH metrics predicted for rib fracture, but only tumour location adjacent to the chest wall remained significant on the multivariate model (P < 0.01). The 2 year fracture-free probability for those adjacent to the chest wall was 65.6%. Among those tumours adjacent to the chest wall, only osteoporosis (P = 0.02) predicted for fracture, whereas none of the chest wall DVH metrics were predictive. Eight per cent (24/289) experienced chest wall pain without fracture.
CONCLUSIONS: None of the chest wall DVH metrics independently predicted for SABR-induced rib fracture when tumour location is taken into account. Patients with tumours adjacent (within 5 mm) to the chest wall are at greater risk of rib fracture after lung SABR, and among these, an additional risk was observed in osteoporotic patients.
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.
Resumo:
Contemporary architecture has tended to increase envelope insulation levels in an unceasing effort to reduce U-values. Traditional masonry architecture in contrast was devoid of insulation, except for the inherent insulative nature of vernacular materials. Also the consistency of the outer membrane of the building skin diminished any impact due to bridging. In contemporary highly insulated walls bridges are numerous due to the necessity to bind inner and outer structural skins through insulation layers. This paper examines thermal bridging in an example of contemporary façade design and compares it with an example of traditional vernacular architecture currently being researched which is characterized by a lack of bridging elements. Focus is given to heavy weight materials of high thermal mass, which appropriately for passive architecture help moderate fluctuations in internal temperature. In an extensive experimental study samples of highly insulated precast concrete sandwich panels and lime rendered masonry walls are tested in a guarded hot-box. The building construction methods are compared for static and dynamic thermal transmittance, via heat flux and surface temperature differential measurements. Focus is given to the differential heat loss due to the thermal bridging in the sandwich panels and its associated impact on overall heat loss relative to traditional masonry construction.
Resumo:
The development of decellularised scaffolds for small diameter vascular grafts is hampered by their limited patency, due to the lack of luminal cell coverage by endothelial cells (EC) and to the low tone of the vessel due to absence of a contractile smooth muscle cells (SMC). In this study, we identify a population of vascular progenitor c-Kit+/Sca-1- cells available in large numbers and derived from immuno-privileged embryonic stem cells (ESCs). We also define an efficient and controlled differentiation protocol yielding fully to differentiated ECs and SMCs in sufficient numbers to allow the repopulation of a tissue engineered vascular graft. When seeded ex vivo on a decellularised vessel, c-Kit+/Sca-1-derived cells recapitulated the native vessel structure and upon in vivo implantation in the mouse, markedly reduced neointima formation and mortality, restoring functional vascularisation. We showed that Krüppel-like transcription factor 4 (Klf4) regulates the choice of differentiation pathway of these cells through β-catenin activation and was itself regulated by the canonical Wnt pathway activator lithium chloride. Our data show that ESC-derived c-Kit+/Sca-1-cells can be differentiated through a Klf4/β-catenin dependent pathway and are a suitable source of vascular progenitors for the creation of superior tissue-engineered vessels from decellularised scaffolds.
Resumo:
Transonic tests in linear cascade wind tunnels can suffer
from significant test section boundary interference effects in pitch. A slotted tailboard has been designed and optimised with an in-house Euler numerical method to reduce such ef- fects. Wind tunnel measurements on an overspeed Mach 1.27 discharge from a Rolls-Royce T2 cascade, featuring strong end-wall shock-induced interference, showed a 77% reduction in the flow pitchwise periodicity error with the optimised tail- board, with respect to the baseline open-jet cascade flow. Two-dimensional Euler predictions were also cross-validated against a three-dimensional Reynolds averaged computation, to explore the three-dimensionality of the discharge