363 resultados para Raoul Walsh
Resumo:
Background: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare.
Objectives: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP.
Methods: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >104 colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination.
Results: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%).
Conclusions: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship.
Resumo:
Infrared water line emission from protoplanetary disks, recently observed by the Spitzer and Herschel space telescopes, is thought to trace the surface layer of the inner to outer regions of the disks. We have modelled the water abundance profile and line emission, especially focusing on the effects of dust size growth and turbulent mixing. Comparison between model calculations and observations suggests a small grain model with turbulent mixing is preferred. Copyright © International Astronomical Union 2014.
Resumo:
Sleep quality and duration are increasingly recognised as being important prognostic parameters in the assessment of an individual's health. However, reliable non-invasive long-term monitoring of sleep in a non-clinical setting remains a challenging problem. This paper describes the validation of a novel under mattress pressure sensing sleep monitoring modality that can be seamlessly integrated into existing home environments and provides a pervasive and distributed solution for monitoring long-term changes in sleep patterns and sleep disorders in adults. 410 minutes of concomitant Under Mattress Bed Sensor (UMBS) and strain gauge data were analysed from eight healthy adults lying passively. In this analysis, customised respirations rate detection algorithms yielded a mean difference of −0.12 breaths per five minutes and a mean percentage error (MPE) of 0.16% when the sensor was placed beneath the mattress. 1,491 minutes of UMBS and video data were recorded simultaneously from four participants in order to assess the movement detection efficacy of customised UMBS algorithms. These algorithms yielded accuracies, sensitivities and specificities of over 90% when compared to a video-based movement detection gold standard. A reduced data set (267 minutes) of wrist actigraphy, the gold standard ambulatory sleep monitor, was recorded. The UMBS was shown to outperform the movement detection ability of wrist actigraphy and has the added advantage of not requiring active subject participation.
Resumo:
Objectives
A P-value <0.05 is one metric used to evaluate the results of a randomized controlled trial (RCT). We wondered how often statistically significant results in RCTs may be lost with small changes in the numbers of outcomes.
Study Design and Setting
A review of RCTs in high-impact medical journals that reported a statistically significant result for at least one dichotomous or time-to-event outcome in the abstract. In the group with the smallest number of events, we changed the status of patients without an event to an event until the P-value exceeded 0.05. We labeled this number the Fragility Index; smaller numbers indicated a more fragile result.
Results
The 399 eligible trials had a median sample size of 682 patients (range: 15-112,604) and a median of 112 events (range: 8-5,142); 53% reported a P-value <0.01. The median Fragility Index was 8 (range: 0-109); 25% had a Fragility Index of 3 or less. In 53% of trials, the Fragility Index was less than the number of patients lost to follow-up.
Conclusion
The statistically significant results of many RCTs hinge on small numbers of events. The Fragility Index complements the P-value and helps identify less robust results.