299 resultados para Pontano, Giovanni Gioviano, 1426-1503.
Resumo:
Microcystins are a family of hepatotoxic peptides produced by freshwater cyanobacteria. Their occurrence in drinking water is of concern since chronic exposure to these toxins causes tumor promotion. It is therefore essential to establish a reliable treatment strategy that will ensure their removal from potable water. We have previously described the rapid destruction of microcystin-LR using TiO2 photocatalysis, however, since there are at least 70 microcystin variants it is essential that the destruction of a number of microcystins be evaluated. In this study the dark adsorption and destruction of four microcystins was followed over a range of pH. All four microcystins were destroyed although the efficiency of their removal varied. The two more hydrophobic microcystins (-LW and -LF) were found to have high dark adsorption (98 and 91% at pH 4) in contrast to microcystin-RR, which was found to have almost no (only 2-3%) dark adsorption across all pH.
Resumo:
Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however non-toxic by-products were detected. It has been shown that photocatalytic reactions are enhanced by utilisation of alternative electron acceptors. We report here enhanced photocatalytic degradation of microcystin-LR following the addition of hydrogen peroxide to the system. It was also found that hydrogen peroxide with UV illumination alone was capable of decomposing microcystin-LR although at a much slower rate than found for TiO2. No HPLC detectable by-products were found when the TiO2/UV/H2O2 system was used indicating that this method is more effective than TiO2/UV alone. Results however indicated that only 18% mineralisation occurred with the TiO2/UV/H2O2 system and hence undetectable by-products must still be present. At higher concentrations hydrogen peroxide was found to compete with microcystin-LR for surface sites on the catalyst but at lower peroxide concentrations this competitive adsorption was not observed. Toxicity studies showed that both in the presence and absence of H2O2 the microcystin solutions were detoxified. These findings suggest that hydrogen peroxide greatly enhances the photocatalytic oxidation of microcystin-LR.
Resumo:
OBJECTIVES: Barrett’s esophagus (BE) is a common premalignant lesion for which surveillance is recommended. This strategy is limited by considerable variations in clinical practice. We conducted an international, multidisciplinary, systematic search and evidence-based review of BE and provided consensus recommendations for clinical use in patients with nondysplastic, indefinite, and low-grade dysplasia (LGD). METHODS: We defined the scope, proposed statements, and searched electronic databases, yielding 20,558 publications that were screened, selected online, and formed the evidence base. We used a Delphi consensus process, with an 80% agreement threshold, using GRADE (Grading of Recommendations Assessment, Development and Evaluation) to categorize the quality of evidence and strength of recommendations. RESULTS: In total, 80% of respondents agreed with 55 of 127 statements in the final voting rounds. Population endoscopic screening is not recommended and screening should target only very high-risk cases of males aged over 60 years with chronic uncontrolled reflux. A new international definition of BE was agreed upon. For any degree of dysplasia, at least two specialist gastrointestinal (GI) pathologists are required. Risk factors for cancer include male gender, length of BE, and central obesity. Endoscopic resection should be used for visible, nodular areas. Surveillance is not recommended for <5 years of life expectancy. Management strategies for indefinite dysplasia (IND) and LGD were identified, including a de-escalation strategy for lower-risk patients and escalation to intervention with follow-up for higher-risk patients. CONCLUSIONS: In this uniquely large consensus process in gastroenterology, we made key clinical recommendations for the escalation/de-escalation of BE in clinical practice. We made strong recommendations for the prioritization of future research.
Resumo:
The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.
Resumo:
Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
Resumo:
A polymeric hydrogel containing a photoinduced electron transfer (PET) based probe for Zn(ii) has been formulated into the wells of a 96-well plate. Upon addition of Zn(ii) ions to selected wells, the fluorescence of the gel was observed to increase in a concentration dependent manner in the 0.25-1.75 mM range. The millimolar binding constant observed for this probe is higher than that reported for other Zn(ii) probes in the literature and offers the possibility to determine the concentration of this ion in environments where the Zn(ii) concentration is high. The combination of the multi-well plate set-up with fluorescence detection offers the possibility of high-throughput screening using low sample volumes in a timely manner. To the best of our knowledge, this is the first reported example of a polymeric hydrogel sensor for zinc with capability for use in fluorescence multi-well plate assay.
Resumo:
The immobilization of a ruthenium complex (Ru2Cl4(az-tpy)2) within a range of supported ionic liquids ([C4C1im]Cl, [C4C1im][NTf2], [C6C1im]Cl, [C4C1pyrr]Br, [C4C1im]Br, [C4C1pyrr]Cl) dispersed silica (SILP) operates as an efficient heterogeneous catalyst in oxidation of long chain linear primary amines to corresponding nitriles. This reaction follows a “green” route using a cheap and easy to handles oxidant (oxygen or air). The conversion was found to be strongly influenced by the alkyl chain length of the amine substrate and the choice of oxidant. No condensation reaction was observed between the starting amines and the selectivity to nitrile is 100%. Moving from a composition of 20 atm N2/5 atm O2 to 5 atm N2/20 atm O2 led to enhancements in the conversion (n-alkylamines) and selectivity (benzonitrile) which have been correlated with an increase of the solubilized oxygen. This was further supported by using different inert gas (nitrogen, helium, argon)/oxygen mixtures indicating that the O2 solubility in the SILP system, has an important effect on conversions and TON in this reaction using SILP catalysts. Experiments performed in the presence of CO2 led to a different behaviour due to the formation of amine-CO2 adducts. The application of the Weisz–Prater criterion confirmed the absence of any diffusional constraints.
Resumo:
Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ~520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.
Resumo:
A series of acyl phosphonamidates, the synthetic precursors to bisphosphonates, have been readily prepared from phosphoramidite type reagents and a range of acid chlorides. These reactions were performed using solventless conditions, where purification was easily achieved using column chromatography with yields ranging from 71-90%. Furthermore, we have demonstrated that these acyl phosphonamidates could be used for the preparation of unsymmetrical bisphosphonates, which do date are scarcely reported in the literature.
Resumo:
We describe a novel strategy for in situ fabrication of hierarchical Fe3O4 nanoclusters-GAs. Fe3O4 NCs-GAs deliver excellent rate capability (the reversible capacities obtained were 1442, 392 and 118 mA h g-1 at 0.1C, 12C and 35C rates), and a high reversible capacity of 577 mA h g-1 over 300 cycles at the current density of 5.2 A g-1 (6C).
Resumo:
We developed a facile two-step hydrothermal procedure to prepare hybrid materials of LiV3O8 nanorods on graphene sheets. The special structure endows them with the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in remarkable electrochemical performance when they were used as cathodes in rechargeable lithium batteries. © 2013 The Royal Society of Chemistry.
Resumo:
The recently discovered, high-temperature proton conductor, La0.99Sr0.01NbO4-δ, was used as a support for the electrochemical promotion of a platinum catalyst. Ethylene oxidation was used as a probe reaction in the temperature range 350-450 °C. Moderate non-Faradaic rate modification, attributable to a protonic promoting species, occurred under negative polarisation; some permanent promotion was also observed. In oxidative atmospheres, both the pO2 of the reaction mixture and the temperature influenced the type and magnitude of the observed rate modification. Rate-enhancement values of up to ρ = 1.4 and Faradaic-efficiency values approaching Λ = -100 were obtained. Promotion was observed under positive polarisation and relatively dry, oxygen-rich atmospheres suggesting that some oxygen ion conductivity may occur under these conditions. Impedance spectroscopy performed in atmospheres of 4 kPa O2/N2 and of 5 kPa H2/N2 under dry and slightly humidified (0.3 kPa H2O) conditions indicated that the electrical resistivity is heavily dominated by the grain-boundary response in the temperature range of the EPOC studies; much lower grain-boundary impedances in the wetter conditions are likely to be attributable to proton transport. © 2009 Elsevier B.V. All rights reserved.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.
Resumo:
The efficiency of solar-energy-conversion devices depends on the absorption region and intensity of the photon collectors. Organic chromophores, which have been widely stabilized on inorganic semiconductors for light trapping, are limited by the interface between the chromophore and semiconductor. Herein we report a novel orange zinc germanate (Zn-Ge-O) with a chromophore-like structure, by which the absorption region can be dramatically expanded. Structural characterizations and theoretical calculations together reveal that the origin of visible-light response can be attributed to the unusual metallic Ge-Ge bonds which act in a similar way to organic chromophores. Benefiting from the enhanced light harvest, the orange Zn-Ge-O demonstrates superior capacity for solar-driven hydrogen production.
Resumo:
Hosted in a wide depression within the Berici Hills (Venetian Plain), outside the maximum extent reached by LGM glaciers, Lake Fimon preserves an almost continuous archive of landscape and climate changes from the penultimate glacial maximum onwards. The stratigraphic succession deposited at the lake bottom has been investigated in three deep cores by means of pollen analysis, petrographic composition, magnetic susceptibility, LOI, and geochronology. Tephra layers have been identified and are currently under study.
Pollen data provide the first continuous vegetation record in northern Italy for the last 150 ky. Terrestrial vegetation varied from interglacial warm-temperate broad leaved to oceanic mixed forests, from boreal conifer forests to open forest-steppes of colder climate. Phases of major forest expansion and reduction have been correlated to isotopic events described in ice (NGRIP), stalagmite (Antro del Corchia) and marine records. Persistent afforestation recorded in northern Italy even during cold phases of the full pleniglacial is consistent with mesoscale paleoclimate simulations suggesting that a sharp rainfall gradient across the Alps enabled the survival of woody species in the southern alpine foreland.
Integrating litho- and biostratigraphical data, we identified sedimentation regìmes, accumulation rates, sediment sources and supply both for the Lake Fimon cores and the adjacent Venetian Plain, allowing a direct comparison with major glacial advances in the Alpine area, deglaciation pulses, and glacio-eustatic displacements of the northern Adriatic shoreline.