289 resultados para PPAR-alpha agonist


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium(II) chloride converts alpha,beta-unsaturated aldehydes to the corresponding cyclopropanols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modelled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferon-alpha (IFN-alpha) therapy is commonly used in the treatment of neoplastic and autoimmune diseases, including cutaneous T cell lymphoma (CTCL). However, the IFN-alpha response is unpredictable, and the IFN-alpha cell targets and pathways are only partially understood. To delineate the molecular mechanisms of IFN-alpha activity, gene expression profiling was performed in a time-course experiment of both IFN-alpha sensitive and IFN-alpha-resistant variants of a CTCL cell line. These experiments revealed that IFN-alpha is responsible for the regulation of hundreds of genes in both variants and predominantly involves genes implicated in signal transduction, cell cycle control, apoptosis, and transcription regulation. Specifically, the IFN-alpha response of tumoral T cells is due to a combination of induction of apoptosis in which TNFSF10 and HSXIAPAF1 may play an important role and cell cycle arrest achieved by downregulation of CDK4 and CCNG2 and upregulation of CDKN2C and tumor suppressor genes (TSGs). Resistance to IFN-alpha appears to be associated with failure to induce IRF1 and IRF7 and deregulation of the apoptotic signals of HSXIAPAF1, TRADD, BAD, and BNIP3. Additionally, cell cycle progression is heralded by upregulation of CDC25A and CDC42. A critical role of NF-kappaB in promoting cell survival in IFN-alpha-resistant cells is indicated by the upregulation of RELB and LTB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptor protein (AP) complexes bind to transmembrane proteins destined for internalization and to membrane lipids, so linking cargo to the accessory internalization machinery. This machinery interacts with the appendage domains of APs, which have platform and beta-sandwich subdomains, forming the binding surfaces for interacting proteins. Proteins that interact with the subdomains do so via short motifs, usually found in regions of low structural complexity of the interacting proteins. So far, up to four motifs have been identified that bind to and partially compete for at least two sites on each of the appendage domains of the AP2 complex. Motifs in individual accessory proteins, their sequential arrangement into motif domains, and partial competition for binding sites on the appendage domains coordinate the formation of endocytic complexes in a temporal and spatial manner. In this work, we examine the dominant interaction sequence in amphiphysin, a synapse-enriched accessory protein, which generates membrane curvature and recruits the scission protein dynamin to the necks of coated pits, for the platform subdomain of the alpha-appendage. The motif domain of amphiphysin1 contains one copy of each of a DX(F/W) and FXDXF motif. We find that the FXDXF motif is the main determinant for the high affinity interaction with the alpha-adaptin appendage. We describe the optimal sequence of the FXDXF motif using thermodynamic and structural data and show how sequence variation controls the affinities of these motifs for the alpha-appendage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on alpha-appendages, called 'top' and 'side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered alpha(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling.

METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided.

RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts.

CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Human alpha defensins are a family of neutrophil-derived antimicrobial peptides also known as human neutrophil peptides (HNPs). The defensin family of peptides are characterised by six invariant cysteine residues forming three disulphide bridges. The formation of the correct disulphide pairs complicates the synthesis of full length human alpha defensin and limits its therapeutic potential as an antimicrobial peptide. Objectives: The aim of this study was to determine whether truncated alpha defensins displayed antimicrobial activity against a range of micro-organisms including oral pathogens. Methods: Engineered peptides were synthesised by solid-phase methods using standard Fmoc chemistry. Antibacterial assays were performed using a previously described ultra sensitive radial diffusion method. A total of five engineered defensin peptides and full length alpha defensin were tested for their sensitivity against eight micro-organisms, including Gram negative bacteria, Gram positive bacteria and fungal pathogens Results: Antimicrobial activity was identified as clear zones around peptide-containing wells. Zone diameters were used to calculate minimum inhibitory concentrations (MICs) for each peptide. There was considerable variability in the susceptibility of the micro-organisms to the truncated analogues. Bacillus subtilis and Enterococcus faecalis were sensitive to the majority of the engineered peptides whereas Staphylococcus aureus, Escherichia coli and Candida albicans displayed resistance (defined as an MIC of greater than 250 ug/ml) to the truncated defensins. Of the five engineered peptides synthesised, the 2-aminobenzoic acid (Abz)-containing analogues based on the C-terminal sequence of alpha defensin displayed MIC values closest to that of the full length defensin in 5 out of 8 micro-organisms studied. Conclusion: This study demonstrates that truncated alpha defensins display variable antimicrobial activity against a range of micro-organisms, including oral pathogens. The generation of truncated defensins without disulphide bridges simplifies their synthesis and increases their therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Transient receptor potential (TRP) channels are widely, but not uniformly, distributed in tissues. To date the dominant focus of attention has been on TRP expression and functionality in neurons. However, their expression and activation in selected non-neuronal cells suggest TRPs have a potential role in coordinating cross-talk during the inflammatory process. Fibroblasts comprise the major cell type in the dental pulp and play an important role in pulpal inflammation. Objectives: The aim of this study was to investigate the expression and functionality of the TRP channels TRPA1, TRPM8, TRPV4 and TRPV1 in human dental pulp fibroblasts. Methods: Dental pulp fibroblasts were derived by explant culture of pulps removed from extracted healthy teeth. Fibroblasts were cultured in DMEM supplemented with 10% FCS, 100U/ml penicillin and 100µg/ml streptomycin. Protein expression of TRP channels was investigated by SDS- polyacrylamide gel electrophoresis and Western blotting of cell lysates from fibroblast cells in culture. TRPA1, TRPM8, TRPV4 and TRPV1 expression was determined by specific antibodies, detected using appropriate anti-species antibodies and chemiluminescence. Functionality of TRP channels was determined by Ca2+ microfluorimetry. Cells were grown on cover slips and incubated with Fura 2AM prior to stimulation with icilin (TRPA1 agonist), menthol (TRPM8 agonist), 4 alpha-phorbol 12,13-didecanoate (4alphaPDD) (TRPV4 agonist) or capsaicin (TRPV1 agonist). Emitted fluorescence (F340/F380) was used to determine intracellular [Ca2+] levels. Results: Fibroblast expression of TRPA1, TRPM8, TRPV4 and TRPV1 was confirmed at the protein level by Western blotting. Increased intracellular [Ca2+] levels in response to icillin, methanol, 4alphaPDD and capsacin, indicated functional expression of TRPA1, TRPM8, TRPV4 and TRPV respectively. Conclusions: The presence and functionality of TRP channels on dental pulp fibroblasts suggests a potential role for these cells in the pulpal neurogenic inflammatory response. (Supported by a research grant from the Royal College of Surgeons of Edinburgh).