273 resultados para P Gene
Resumo:
Gene expression connectivity mapping has gained much popularity recently with a number of successful applications in biomedical research testifying its utility and promise. Previously methodological research in connectivity mapping mainly focused on two of the key components in the framework, namely, the reference gene expression profiles and the connectivity mapping algorithms. The other key component in this framework, the query gene signature, has been left to users to construct without much consensus on how this should be done, albeit it has been an issue most relevant to end users. As a key input to the connectivity mapping process, gene signature is crucially important in returning biologically meaningful and relevant results. This paper intends to formulate a standardized procedure for constructing high quality gene signatures from a user’s perspective.
Resumo:
A recent phase 2 study of metastatic colorectal carcinoma (CRC) patients showed that mismatch repair gene status was predictive of clinical response to PD-1-targeting immune checkpoint blockade. Further examination revealed strong correlation between PD-L1 protein expression and microsatellite instability (MSI) in stage IV CRC, suggesting that the amount of PD-L1 protein expression could identify late stage patients who may benefit from immunotherapy. To assess whether the clinical associations between PD-L1 gene expression and MSI identified in metastatic CRC are also present in stage II/III CRC, we used in silico analysis to elucidate the cell types expressing the PD-L1 gene. We found a significant association of PD-L1 gene expression with MSI in early stage CRC (P < 0.001) and show that unlike in non-CRC tumors, PD-L1 is derived predominantly from the immune infiltrate. We demonstrate that PD-L1 gene expression has positive prognostic value in the adjuvant disease setting (PD-L1low v PD-L1high HR = 9.09; CI, 2.11-39.10). PD-L1 gene expression had predictive value, as patients with high PD-L1 expression appear to be harmed by standard-of-care treatment (HR = 4.95; CI,1.10-22.35). Building on the promising results from the metastatic CRC PD-1-targeting trial, we provide compelling evidence that PD-L1high/MSI/immunehigh stage II/III CRC patients should not receive standard chemotherapy. This conclusion supports the rationale to clinically evaluate this patient subgroup for PD-1 blockade treatment.
Resumo:
<p>Urothelial cancer (UC) is highly recurrent and can progress from non-invasive (NMIUC) to a more aggressive muscle-invasive (MIUC) subtype that invades the muscle tissue layer of the bladder. We present a proof of principle study that network-based features of gene pairs can be used to improve classifier performance and the functional analysis of urothelial cancer gene expression data. In the first step of our procedure each individual sample of a UC gene expression dataset is inflated by gene pair expression ratios that are defined based on a given network structure. In the second step an elastic net feature selection procedure for network-based signatures is applied to discriminate between NMIUC and MIUC samples. We performed a repeated random subsampling cross validation in three independent datasets. The network signatures were characterized by a functional enrichment analysis and studied for the enrichment of known cancer genes. We observed that the network-based gene signatures from meta collections of proteinprotein interaction (PPI) databases such as CPDB and the PPI databases HPRD and BioGrid improved the classification performance compared to single gene based signatures. The network based signatures that were derived from PPI databases showed a prominent enrichment of cancer genes (e.g., TP53, TRIM27 and HNRNPA2Bl). We provide a novel integrative approach for large-scale gene expression analysis for the identification and development of novel diagnostical targets in bladder cancer. Further, our method allowed to link cancer gene associations to network-based expression signatures that are not observed in gene-based expression signatures.p>