356 resultados para Optical physics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly excited eigenstates of atoms and ions with open f shell are chaotic superpositions of thousands, or even millions, of Hartree-Fock determinant states. The interaction between dielectronic and multielectronic configurations leads to the broadening of dielectronic recombination resonances and relative enhancement of photon emission due to opening of thousands of radiative decay channels. The radiative yield is close to 100% for electron energy <1 eV and rapidly decreases for higher energies due to opening of many autoionization channels. The same mechanism predicts suppression of photoionization and relative enhancement of the Raman scattering. Results of our calculations of the recombination rate are in agreement with the experimental data for W20+ and Au25+.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [I. I. Fabrikant and G. F. Gribakin, Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at v < 1 a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the intermediate energy range from the Ps ionization threshold up to v ∼ 2 a.u., where the two are similar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the competing effects of simultaneous Markovian and non-Markovian decoherence mechanisms acting on a single spin. We show the existence of a threshold in the relative strength of such mechanisms above which the spin dynamics becomes fully Markovian, as revealed by the use of several non-Markovianity measures. We identify a measure-dependent nested structure of such thresholds, hinting at a causality relationship among the various non-Markovianity witnesses used in our analysis. Our considerations are then used to argue the unavoidably non-Markovian evolution of a single-electron quantum dot exposed to both intrinsic and Markovian technical noise, the latter of arbitrary strength. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the use of a recently proposed iterative collision model with interenvironment swaps displays a signature of strongly non-Markovian dynamics that is highly dependent on the establishment of system-environment correlations. Two models are investigated: one in which such correlations are canceled iteratively and one in which they are kept all across the dynamics. The degree of non-Markovianity, quantified using a measure based on the trace distance, is found to be much greater for all coupling strengths, when system-environment correlations are maintained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the optomechanical properties of a periodic array of identical scatterers placed inside an optical cavity and extend our previous results. We show that operating at the points where the array is transmissive results in linear optomechanical coupling strengths between the cavity field and collective motional modes of the array that may be several orders of magnitude larger than is possible with an equivalent reflective ensemble. We describe and interpret these effects in detail and investigate the nature of the scaling laws of the coupling strengths for the different transmissive points in various regimes. © 2013 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reversible work extraction from identical quantum systems via collective operations was shown to be possible even without producing entanglement among the sub-parts. Here, we show that implementing such global operations necessarily imply the creation of quantum correlations, as measured by quantum discord. We also reanalyze the conditions under which global transformations outperform local gates as far as maximal work extraction is considered by deriving a necessary and sufficient condition that is based on classical correlations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We test current numerical implementations of laser-matter interactions by comparison with exact analytical results. Focusing on photon emission processes, it is found that the numerics accurately reproduce analytical emission spectra in all considered regimes, except for the harmonic structures often singled out as the most significant high-intensity (multiphoton) effects. We find that this discrepancy originates in the use of the locally constant field approximation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exploiting multidimensional quantum walks as feasible platforms for quantum computation and quantum simulation attracts constantly growing attention from a broad experimental physics community. Here, we propose a two-dimensional quantum walk scheme with a single-qubit coin that presents, in the considered regimes, a strong localizationlike effect on the walker. The result could provide new possible directions for the implementation of quantum algorithms or from the point of view of quantum simulation. We characterize the localizationlike effect in terms of the parameters of a step-dependent qubit operation that acts on the coin space after any standard coin operation, showing that a proper choice can guarantee a nonnegligible probability of finding the walker in the origin even for large times. We finally discuss the robustness to imperfections, a qualitative relation with coherences behavior, and possible experimental realizations of this model with the current state-of-the-art settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present ab initio studies of photoelectron spectra for above threshold detachment (ATD) of F- anions in short, 1300 nm and 1800 nm laser pulses. We identify and assess the importance of electron rescattering in strong-field photodetachment of a negative ion through comparison with an analytic, Keldysh-type approach, demonstrating the capability of ab-initio computation in the challenging near-IR regime. We further assess the influence of the strong electron correlation on the photodetachment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultracold hybrid ion–atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the ${\rm Y}{{{\rm b}}^{+}}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes; ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm Yb}(6{{{\rm s}}^{2}}{{\;}^{1}}{\rm S})+{\rm R}{{{\rm b}}^{+}}(4{{{\rm p}}^{6}}{{\;}^{1}}{\rm S})+h\nu $ and ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm YbR}{{{\rm b}}^{+}}({{X}^{1}}{{\Sigma }^{+}})+h\nu $. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion–atom collisions dominates cold ion–atom collisions. For spin-dependent processes [1] the anisotropic magnetic dipole–dipole interaction and the second-order spin–orbit coupling can play important roles, inducing coupling between the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately five orders of magnitude higher than the charge-exchange collision rate [1]. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a circuit-QED setup that allows the induction and control of non-Markovian dynamics of a qubit. Non-Markovianity is enforced over the qubit by means of its direct coupling to a bosonic mode which is controllably coupled to another qubit-mode system. We show that this configuration can be achieved in a circuit-QED setup consisting of two initially independent superconducting circuits, each formed by one charge qubit and one transmission-line resonator, which are put in interaction by coupling the resonators to a current-biased Josephson junction. We solve this problem exactly and then proceed with a thorough investigation of the emergent non-Markovianity in the dynamics of the qubits. Our study might serve the context for the first experimental assessment of non-Markovianity in a multielement solid-state device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiative decay processes at cold and ultra cold temperatures for sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH+ molecular cation. A multi-reference configuration-interaction approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals are obtained from state-averaged multi-configuration-self-consistent field calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 μK up to 10 000 K. Results are obtained for all isotopes of sulfur, colliding with H+ and D+ ions and comparison is made to a number of other collision systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of bipartite bosonic systems, two notions of classicality of correlations can be defined: P-classicality, based on the properties of the Glauber-Sudarshan P-function; and C-classicality, based on the entropic quantum discord. It has been shown that these two notions are maximally inequivalent in a static (metric) sense -- as they coincide only on a set of states of zero measure. We extend and reinforce quantitatively this inequivalence by addressing the dynamical relation between these types of non-classicality in a paradigmatic quantum-optical setting: the linear mixing at a beam splitter of a single-mode Gaussian state with a thermal reference state. Specifically, we show that almost all P-classical input states generate outputs that are not C-classical. Indeed, for the case of zero thermal reference photons, the more P-classical resources at the input the less C-classicality at the output. In addition, we show that the P-classicality at the input -- as quantified by the non-classical depth -- does instead determine quantitatively the potential of generating output entanglement. This endows the non-classical depth with a new operational interpretation: it gives the maximum number of thermal reference photons that can be mixed at a beam splitter without destroying the output entanglement.