278 resultados para Local homeomorphisms
Resumo:
Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.
Resumo:
We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.
Resumo:
Background: Spatially localized duration compression of a briefly presented moving stimulus following adaptation in the same location is taken as evidence for modality-specific neural timing mechanisms.
Aims: The present study used random dot motion stimuli to investigate where these mechanisms may be located.
Method: Experiment 1 measured duration compression of the test stimulus as a function of adaptor speed and revealed that duration compression is speed tuned. These data were then used to make predictions of duration compression responses for various models which were tested in experiment 2. Here a mixed-speed adaptor stimulus was used with duration compression being measured as a function of the adaptor’s ‘speed notch’ (the removal of a central band from the speed range).
Results: The results were consistent with a local-mean model.
Conclusions: Local-motion mechanisms are involved in duration perception of brief events.
Resumo:
The local government elections of 22 May 2014 in Northern Ireland were the first to be held under revised district boundaries, with 11 'super councils' replacing the 26-council model used since 1973. Despite the structural reform, little changed in terms of political party support. Although they suffered some losses, the Democratic Unionist Party and Sinn Féin remained firmly entrenched as the two dominant players at local government level in Northern Ireland. The Ulster Unionist Party enjoyed only a marginal increase in its vote share, while the Social Democratic and Labour Party recorded one of the worst electoral performances in its history. Elsewhere, the Traditional Unionist Voice enjoyed a 'breakthrough' election and the Alliance Party defied widely held predictions that it would suffer at the polls as a result of its role in the Union flag crisis. The campaign was overshadowed by both the concurrent European Parliament contest and several crises of power-sharing at Stormont. As a result, distinctly local government issues received scant and fleeting attention. The contest saw the lowest local election turnout in Northern Ireland's history, continuing a general trend of increasing voter apathy in the province.
Resumo:
Superlenses enable near-field imaging beyond the diffraction limit. However, their widespread implementation in optical imaging technology so far has been limited by large-scale fabrication, fixed lens position and specific object materials. Here, we demonstrate that a dielectric lamella of sub-wavelength size in all three spatial dimensions behaves as a compact superlens that operates at infrared wavelengths and can be positioned to image any local microscopic area of interest on the sample. In particular, the lamella superlens may be placed in contact with any type of object and therefore enables examination of hard-to-scan samples e.g. with high topography or in liquids, without altering the specimen design. This lamella-based local superlens design is directly applicable to sub-wavelength light-based technology such as integrated optics.
Resumo:
Strain effects have a significant role in mediating classic ferroelectric behavior such as polarization switching and domain wall dynamics. These effects are of critical relevance if the ferroelectric order parameter is coupled to strain and is therefore, also ferroelastic. Here, switching spectroscopy piezoresponse force microscopy (SS-PFM) is combined with control of applied tip pressure to exert direct control over the ferroelastic and ferroelectric switching events, a modality otherwise unattainable in traditional PFM. As a proof of concept, stress-mediated SS-PFM is applied toward the study of polarization switching events in a lead zirconate titanate thin film, with a composition near the morphotropic phase boundary with co-existing rhombohedral and tetragonal phases. Under increasing applied pressure, shape modification of local hysteresis loops is observed, consistent with a reduction in the ferroelastic domain variants under increased pressure. These experimental results are further validated by phase field simulations. The technique can be expanded to explore more complex electromechanical responses under applied local pressure, such as probing ferroelectric and ferroelastic piezoelectric nonlinearity as a function of applied pressure, and electro-chemo-mechanical response through electrochemical strain microscopy.
Resumo:
In forensic investigations, it is common for forensic investigators to obtain a photograph of evidence left at the scene of crimes to aid them catch the culprit(s). Although, fingerprints are the most popular evidence that can be used, scene of crime officers claim that more than 30% of the evidence recovered from crime scenes originate from palms. Usually, palmprints evidence left at crime scenes are partial since very rarely full palmprints are obtained. In particular, partial palmprints do not exhibit a structured shape and often do not contain a reference point that can be used for their alignment to achieve efficient matching. This makes conventional matching methods based on alignment and minutiae pairing, as used in fingerprint recognition, to fail in partial palmprint recognition problems. In this paper a new partial-to-full palmprint recognition based on invariant minutiae descriptors is proposed where the partial palmprint’s minutiae are extracted and considered as the distinctive and discriminating features for each palmprint image. This is achieved by assigning to each minutiae a feature descriptor formed using the values of all the orientation histograms of the minutiae at hand. This allows for the descriptors to be rotation invariant and as such do not require any image alignment at the matching stage. The results obtained show that the proposed technique yields a recognition rate of 99.2%. The solution does give a high confidence to the judicial jury in their deliberations and decision.