289 resultados para Leukemia Diagnosis
Resumo:
We report a case of acute lymphoblastic leukaemia relapsing after allogeneic bone marrow transplantation in which the polymerase chain reaction (PCR) was used to assess chimeric status. This technique demonstrated the progressive reappearance of host cells prior to clinical relapse. The relapse was of host cell origin as shown by the presence of female (recipient) metaphases containing an abnormal chromosomal marker (iso 9q) which had also been present at initial diagnosis. The emergence of host cells in this case, detected only by PCR techniques but not by cytogenetic methods, appeared to herald overt relapse. PCR analysis provides a sensitive tool for detecting a progressive rise in host cell numbers which may predict clinical relapse.
Resumo:
OBJECTIVE: To compare the use of a generic molecular assay to 'standard' investigations used to assist the diagnosis of late onset bacterial sepsis in very low birth weight infants (VLBW, <1500g).
METHODS: VLBW infants, greater than 48 hours of age, who were clinically suspected to have sepsis were investigated using standard tests (full blood count, C-reactive protein (at presentation) and blood culture), in addition, blood was taken for a universal molecular assay (16S rRNA reverse transcriptase PCR) for comparison. Clinical data were recorded during the suspected infection episode. A validated sepsis score (NEO-KISS) was used to retrospectively determine the presence of sepsis (independent of blood culture). The performance of each of the tests were compared by sensitivity, specificity, positive/negative likihood ratios (+/-LR) and postive/negative predictive values (PPV/NPV).
RESULTS: Sixty-five babies with suspected clinical sepsis were prospectively included. The performance indicators are presented with 95% confidence limits. For the detection of bacteria, blood culture had sensitivity of 0.57 (0.34-0.78), specificity of 0.45 (0.30-0.61); +LR of 1.05 (0.66-1.66) and-LR of 0.94 (0.52-1.7); PPV of 33.3 (18.56-50.97) and NPV of 68.97 (49.17-87.72). Serum CRP had sensitivity of 0.92 (0.64-1) and specificity of 0.36 (0.17-0.59); +LR of 1.45 (1-2.1) and-LR of 0.21 (0.03-1.5); PPV of 44.46 (26.6-66.6) and NPV of 88.9 (51.8-99.7). The universal molecular assay had sensitivity of 0.76 (0.53-0.92), specificity of 0.95 (0.85-0.99); +LR of 16.8 (4.2-66.3) and-LR of 0.25 (0.1-0.5); PPV of 88.9 (65.3-98.6) and NPV of 89.4 (76.9-96.5).
CONCLUSIONS: In VLBW infants this universal molecular assay performed better in the diagnosis of late onset sepsis (LOS) than blood culture and CRP. Further development is required to explore and improve the performance of the assay in real-time diagnosis.
Resumo:
Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 106). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1126-134 (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.
Resumo:
We describe, for the first time the use of hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of drug substances and glucose from skin in vitro and in vivo. MN prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) (11.1% w/w) and poly(ethyleneglycol) 10,000 daltons (5.6% w/w) and crosslinked by esterification swelled upon skin insertion by uptake of fluid. Post-removal, theophylline and caffeine were extracted from MN and determined using HPLC, with glucose quantified using a proprietary kit. In vitro studies using excised neonatal porcine skin bathed on the underside by physiologically-relevant analyte concentrations showed rapid (5 min) analyte uptake. For example, mean concentrations of 0.16 μg/mL and 0.85 μg/mL, respectively, were detected for the lowest (5 μg/mL) and highest (35 μg/mL) Franz cell concentrations of theophylline after 5 min insertion. A mean concentration of 0.10 μg/mL was obtained by extraction of MN inserted for 5 min into skin bathed with 5 μg/mL caffeine, while the mean concentration obtained by extraction of MN inserted into skin bathed with 15 μg/mL caffeine was 0.33 μg/mL. The mean detected glucose concentration after 5 min insertion into skin bathed with 4 mmol/L was 19.46 nmol/L. The highest theophylline concentration detected following extraction from a hydrogel-forming MN inserted for 1 h into the skin of a rat dosed orally with 10 mg/kg was of 0.363 μg/mL, whilst a maximum concentration of 0.063 μg/mL was detected following extraction from a MN inserted for 1 h into the skin of a rat dosed with 5 mg/kg theophylline. In human volunteers, the highest mean concentration of caffeine detected using MN was 91.31 μg/mL over the period from 1 to 2 h post-consumption of 100 mg Proplus® tablets. The highest mean blood glucose level was 7.89 nmol/L detected 1 h following ingestion of 75 g of glucose, while the highest mean glucose concentration extracted from MN was 4.29 nmol/L, detected after 3 hours skin insertion in human volunteers. Whilst not directly correlated, concentrations extracted from MN were clearly indicative of trends in blood in both rats and human volunteers. This work strongly illustrates the potential of hydrogel-forming MN in minimally-invasive patient monitoring and diagnosis. Further studies are now ongoing to reduce clinical insertion times and develop mathematical algorithms enabling determination of blood levels directly from MN measurements.
Resumo:
BACKGROUND: Successful management of chronic cough has varied in the primary research studies in the reported literature. One of the potential reasons relates to a lack of intervention fidelity to the core elements of the diagnostic and/or therapeutic interventions that were meant to be used by the investigators.
METHODS: We conducted a systematic review to summarize the evidence supporting intervention fidelity as an important methodologic consideration in assessing the effectiveness of clinical practice guidelines used for the diagnosis and management of chronic cough. We developed and used a tool to assess for five areas of intervention fidelity. Medline (PubMed), Scopus, and the Cochrane Database of Systematic Reviews were searched from January 1998 to May 2014. Guideline recommendations and suggestions for those conducting research using guidelines or protocols to diagnose and manage chronic cough in the adult were developed and voted upon using CHEST Organization methodology.
RESULTS: A total of 23 studies (17 uncontrolled prospective observational, two randomized controlled, and four retrospective observational) met our inclusion criteria. These articles included 3,636 patients. Data could not be pooled for meta-analysis because of heterogeneity. Findings related to the five areas of intervention fidelity included three areas primarily related to the provider and two primarily related to the patients. In the area of study design, 11 of 23 studies appeared to be underpinned by a single guideline/protocol; for training of providers, two of 23 studies reported training, and zero of 23 reported the use of an intervention manual; and for the area of delivery of treatment, when assessing the treatment of gastroesophageal reflux disease, three of 23 studies appeared consistent with the most recent guideline/protocol referenced by the authors. For receipt of treatment, zero of 23 studies mentioned measuring concordance of patient-interventionist understanding of the treatment recommended, and zero of 23 mentioned measuring enactment of treatment, with three of 23 measuring side effects and two of 23 measuring adherence. The overall average intervention fidelity score for all 23 studies was poor (20.74 out of 48).
CONCLUSIONS: Only low-quality evidence supports that intervention fidelity strategies were used when conducting primary research in diagnosing and managing chronic cough in adults. This supports the contention that some of the variability in the reporting of patients with unexplained or unresolved chronic cough may be due to lack of intervention fidelity. By following the recommendations and suggestions in this article, researchers will likely be better able to incorporate strategies to address intervention fidelity, thereby strengthening the validity and generalizability of their results that provide the basis for the development of trustworthy guidelines.
Resumo:
Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies.
Resumo:
PURPOSE OF REVIEW:
Recent studies underscore the importance of angle-closure glaucoma (ACG) as a cause of world blindness. A major contribution in assessing the true impact of this disease has been an article estimating the number of persons with occludable angles, angle closure, and blindness from ACG in China as 28.2 million, 9.1 million, and 1.7 million, respectively. Although these numbers are based on data from Singapore and Mongolia, which may be applied to China only with caution, they emphasize the blinding potential of ACG, which is three times as likely to be associated with blindness as open-angle glaucoma (OAG).
RECENT FINDINGS:
Recent reports in the Chinese literature on ACG prevalence suffer from definitional problems that would appear to lead to systematic overestimates of ACG prevalence and underestimates of OAG prevalence. Nonetheless, data from studies by Chinese investigators further emphasize the strong association between ACG and blindness, with fully 16% of subjects with ACG blind in one report-a far higher proportion than for OAG in China and elsewhere. The importance of topiramate as a cause of secondary angle closure has recently been understood, in part, because of a series of 19 such cases reported by investigators at the Food and Drug Administration.
SUMMARY:
Angle closure in this setting appears to be caused by uveal effusion and anterior rotation of the ciliary body with resultant closure of the angle. The condition is not always responsive to laser iridectomy, and elimination of the causative agent appears to be critical. Ultrasonic biomicroscopy is a potential new diagnostic modality for ACG, allowing the measurement of novel parameters, such as the angle opening distance (AOD) at 500 microm (AOD 500). The efficacy of such parameters in improving screening for ACG can only be established by prospective studies of potentially at-risk eyes. A number of novel treatments for AC and angle closure have recently been proposed, including cataract extraction, paracentesis, and argon laser iridoplasty. As with proposed new diagnostic modalities, the efficacy of these treatments remains to be demonstrated with prospective studies, ideally organized in a controlled, randomized fashion.
Resumo:
PURPOSE OF REVIEW:
Highlights recent studies relating to the impact of corneal structure and biomechanical properties on glaucoma evaluation and management.
RECENT FINDINGS:
Central corneal thickness has been shown to play a role in the interpretation of intraocular pressure. Central corneal thickness has also been suggested as a glaucoma risk factor. The potential role of other corneal factors, such as stromal makeup, in the accurate measurement of intraocular pressure and the assessment of glaucoma risk remains to be determined.
SUMMARY:
Improved understanding of central corneal thickness and corneal biomechanical properties may someday lead to a better understanding of glaucoma risk and its assessment.
Resumo:
PURPOSE:
To assess the noneconomic value of tests used in the diagnosis and management of glaucoma, and explore the contexts and factors that determine such value.
DESIGN:
Perspective.
METHODS:
Selected articles from primary and secondary sources were reviewed and interpreted in the context of the authors' clinical and research experience, influenced by our perspectives on the tasks of reducing the global problem of irreversible blindness caused by glaucoma. The value of any test used in glaucoma is addressed by 3 questions regarding: its contexts, its kind of value, and its implicit or explicit benefits.
RESULTS:
Tonometry, slit-lamp gonioscopy, and optic disc evaluation remain the foundation of clinic-based case finding, whether in areas of more or less abundant resources. In resource-poor areas, there is urgency in identifying patients at risk for severe functional loss of vision; screening strategies have proven ineffective, and efforts are hindered by the inadequate allocation of support. In resource-abundant areas, the wider spectrum of glaucoma is addressed, with emphasis on early detection of structural changes of little functional consequence; these are increasingly the focus of new and expensive technologies whose clinical value has not been established in longitudinal and population-based studies. These contrasting realities in part reflect differences among the value ascribed, often implicitly, to the tests used in glaucoma.
CONCLUSIONS:
The value of any test is determined by 3 aspects: its context of usage; its comparative worth and to whom its benefit accrues; and how we define historically what we are testing. These multiple factors
Resumo:
BACKGROUND: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease.
METHODS: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively.
RESULTS: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples.
CONCLUSIONS: These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.
Resumo:
The remarkable stability of microRNAs in biofluids underlies their potential as biomarkers, but their small size presents challenges for detection by RT-qPCR. The heterogeneity of microRNAs, with each one comprising a series of variants or 'isomiRs', adds additional complexity. Presented here are the key considerations for use of RT-qPCR to measure microRNAs and their isomiRs, with a focus on plasma. Modified nucleotides can be incorporated into primer sequences to enhance affinity and provide increased specificity and sensitivity for RT-qPCR assays. Approaches based upon polyA tailing and use of a common oligo(dT)-based reverse transcription oligonucleotide will detect most isomiRs. Conversely, stem-loop RT oligonucleotides and sequence specific probes can enable detection of specific isomiRs of interest. Next generation sequencing of all the products of a microRNA RT-PCR reaction is a promising new approach for both microRNA quantification and characterization.