687 resultados para Atomic and Molecular Physics, and Optics
Resumo:
We present an experimental demonstration of nonresonant manipulation of vibrational states in a molecule by an intense ultrashort laser pulse. A vibrational wave packet is generated in D-2(+) through tunnel ionization of D-2 by a few-cycle pump pulse. A similar control pulse is applied as the wave packet begins to dephase so that the dynamic Stark effect distorts the electronic environment of the nuclei, transferring vibrational population. The time evolution of the modified wave packet is probed via the D-2(+) photodissociation yield that results from the application of an intense probe pulse. Comparing the measured yield with a quasiclassical trajectory model allows us to determine the redistribution of vibrational population caused by the control pulse. ©
Resumo:
Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.
Resumo:
We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.
Resumo:
We consider the stimulated Raman transition between two long-lived states via multiple intermediate states, such as between hyperfine ground states in the alkali-metal atoms. We present a concise treatment of the general, multilevel, off-resonant case, and we show how the lightshift emerges naturally in this approach. We illustrate our results by application to alkali-metal atoms and we make specific reference to cesium. We comment on some artifacts, due solely to the geometrical overlap of states, which are relevant to existing experiments.
Resumo:
The R-matrix method describing the scattering of low-energy electrons by complex atoms and ions is extended to include terms of the Breit-Pauli Hamiltonian. An application is made to the astrophysically important 1s 2s S-1s 2s2p P transition in Fe XXIII, where in the most accurate calculations carried out all terms of the 1s 2s, 1s2s2p and 1s2p configurations are included in the expansion describing the collision. This gives up to 28 coupled channels for each total angular momentum and parity which are solved on a CRAY-1. The collision strengths are increased by more than a factor of two from their non-relativistic values at all energies considered.
Resumo:
In this work we explore the validity of employing a modified version of the nonrelativistic structure code civ3 for heavy, highly charged systems, using Na-like tungsten as a simple benchmark. Consequently, we present radiative and subsequent collisional atomic data compared with corresponding results from a fully relativistic structure and collisional model. Our motivation for this line of study is to benchmark civ3 against the relativistic grasp0 structure code. This is an important study as civ3 wave functions in nonrelativistic R-matrix calculations are computationally less expensive than their Dirac counterparts. There are very few existing data for the W LXIV ion in the literature with which we can compare except for an incomplete set of energy levels available from the NIST database. The overall accuracy of the present results is thus determined by the comparison between the civ3 and grasp0 structure codes alongside collisional atomic data computed by the R-matrix Breit-Pauli and Dirac codes. It is found that the electron-impact collision strengths and effective collision strengths computed by these differing methods are in good general agreement for the majority of the transitions considered, across a broad range of electron temperatures.
Resumo:
We propose an effective Hamiltonian approach to investigate decoherence of a quantum system in a non-Markovian reservoir, naturally imposing the complete positivity on the reduced dynamics of the system. The formalism is based on the notion of an effective reservoir, i.e., certain collective degrees of freedom in the reservoir that are responsible for the decoherence. As examples for completely positive decoherence, we present three typical decoherence processes for a qubit such as dephasing, depolarizing, and amplitude damping. The effects of the non-Markovian decoherence are compared to the Markovian decoherence.