315 resultados para submillimeter: stars
Resumo:
We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69MJup planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P d < 10 ) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (Teff < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.
Resumo:
Understanding the labile status of phosphorus (P) in sediments is crucial for managing a eutrophic lake, but it is hindered by lacking in situ data particularly on a catchment scale. In this study, we for the first time characterized in situ labile P in sediments with the Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique at a two-dimensional (2D), submillimeter resolution in a large eutrophic lake (Lake Taihu, China, with an area of 2338km2). The concentration of DGT-labile P in the sediment profiles showed strong variation mostly ranging from 0.01 to 0.35mgL-1 with a considerable number of hotspots. The horizontal heterogeneity index of labile P varied from 0.04 to 4.5. High values appeared at the depths of 0-30mm, likely reflecting an active layer of labile P under the sediment-water interface (SWI). Concentration gradients of labile P were observed from the high-resolution 1D DGT profiles in both the sediment and overlying water layers close to the SWI. The apparent diffusion flux of P across the SWI was calculated between -21 and 65ngcm-2d-1, which showed that the sediments tended to be a source and sink of overlying water P in the algal- and macrophyte-dominated regions, respectively. The DGT-labile P in the 0-30mm active layer showed a better correlation with overlying water P than the labile P measured by ex situ chemical extraction methods. It implies that in situ, high-resolution profiling of labile P with DGT is a more reliable approach and will significantly extend our ability in in situ monitoring of the labile status of P in sediments in the field.
Resumo:
We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 +/- 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H]= -0.16 +/- 0.08 and has a radius R-star = 0.716 +/- 0.024 R-circle dot and mass M-star = 0.775 +/- 0.027M(circle dot). The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R-p = 2.53 +/- 0.18 R-circle plus. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 +/- 1.33 M-circle plus planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.
Resumo:
Cao et al. reported a possible progenitor detection for the Type Ib supernovae iPTF13bvn for the first time. We find that the progenitor is in fact brighter than the magnitudes previously reported by approximately 0.7-0.2 mag with a larger error in the bluer filters. We compare our new magnitudes to our large set of binary evolution models and find that many binary models with initial masses in the range of 10-20M(circle dot) match this new photometry and other constraints suggested from analysing the supernova. In addition, these lower mass stars retain more helium at the end of the model evolution indicating that they are likely to be observed as Type Ib supernovae rather than their more massive, Wolf-Rayet counter parts. We are able to rule out typical Wolf-Rayet models as the progenitor because their ejecta masses are too high and they do not fit the observed SED unless they have a massive companion which is the observed source at the supernova location. Therefore only late-time observations of the location will truly confirm if the progenitor was a helium giant and not a Wolf-Rayet star.
Resumo:
We analyze a set of 760 475 observations of 333 026 unique main-belt objects obtained by the Pan-STARRS1(PS1) survey telescope between 2012 May 20 and 2013 November 9, a period during which PS1 discoveredtwo main-belt comets, P/2012 T1 (PANSTARRS) and P/2013 R3 (Catalina-PANSTARRS). PS1 cometdetection procedures currently consist of the comparison of the point spread functions (PSFs) of movingobjects to those of reference stars, and the flagging of objects that show anomalously large radial PSFwidths for human evaluation and possible observational follow-up. Based on the number of missed discoveryopportunities among comets discovered by other observers, we estimate an upper limit comet discoveryefficiency rate of 70% for PS1. Additional analyses that could improve comet discovery yields infuture surveys include linear PSF analysis, modeling of trailed stellar PSFs for comparison to trailed movingobject PSFs, searches for azimuthally localized activity, comparison of point-source-optimized photometryto extended-source-optimized photometry, searches for photometric excesses in objects withknown absolute magnitudes, and crowd-sourcing. Analysis of the discovery statistics of the PS1 surveyindicates an expected fraction of 59 MBCs per 106 outer main-belt asteroids (corresponding to a totalexpected population of 140 MBCs among the outer main-belt asteroid population with absolute magnitudesof 12 < HV < 19:5), and a 95% confidence upper limit of 96 MBCs per 106 outer main-belt asteroids(corresponding to a total of 230 MBCs), assuming a detection efficiency of 50%. We note howeverthat significantly more sensitive future surveys (particularly those utilizing larger aperture telescopes)could detect many more MBCs than estimated here. Examination of the orbital element distribution ofall known MBCs reveals an excess of high eccentricities (0:1 < e < 0:3) relative to the background asteroidpopulation. Theoretical calculations show that, given these eccentricities, the sublimation rate for atypical MBC is orders of magnitude larger at perihelion than at aphelion, providing a plausible physicalexplanation for the observed behavior of MBCs peaking in observed activity strength near perihelion.These results indicate that the overall rate of mantle growth should be slow, consistent with observationalevidence that MBC activity can be sustained over multiple orbit passages.
Resumo:
We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 x 10(42) erg s(-1) and duration similar to 90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(Ni-56) = 0.040 +/- 0.015 M-circle dot from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M-circle dot, an initial progenitor radius of 1.6 x 10(13) cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M-circle dot was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.
Resumo:
SN 2012ec is a Type IIP supernova (SN) with a progenitor detection and comprehensive photospheric phase observational coverage. Here, we present Very Large Telescope and Public ESO Spectroscopic Survey of Transient Objects observations of this SN in the nebular phase. We model the nebular [O I] lambda lambda 6300, 6364 lines and find their strength to suggest a progenitor main-sequence mass of 13-15 M-circle dot. SN2012ec is unique among hydrogen-rich SNe in showing a distinct line of stable nickel [Ni II] lambda 7378. This line is produced by Ni-58, a nuclear burning ash whose abundance is a sensitive tracer of explosive burning conditions. Using spectral synthesis modelling, we use the relative strengths of [Ni II] lambda 7378 and [Fe II] lambda 7155 (the progenitor of which is Ni-56) to derive a Ni/Fe production ratio of 0.20 +/- 0.07 (by mass), which is a factor 3.4 +/- 1.2 times the solar value. High production of stable nickel is confirmed by a strong [Ni II] 1.939 mu m line. This is the third reported case of a core-collapse SN producing a Ni/Fe ratio far above the solar value, which has implications for core-collapse explosion theory and galactic chemical evolution models.
Resumo:
We present optical spectra of pre-main-sequence (PMS) candidates around the Ha region taken with the Southern African Large Telescope in the low metallicity (Z) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of Z similar to 1/5 Z(circle dot). It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, (M) over dot(acc), are a function of Z. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-Z star-forming region. Our data set was enlarged with literature data of H alpha emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 and 2 M-circle dot and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of Two Micron All Sky Survey and Spitzer infrared photometry. We find (M) over dot(acc) in the 1-2 M-circle dot interval to depend quasi-quadratically on stellarmass, with (M) over dot(acc) proportional to M-*(2.4 +/- 0.35), and inversely with stellar age, with (M) over dot(acc) proportional to t(*)(-0.7 +/- 0.4). Furthermore, we compare our spectroscopic (M) over dot(acc) measurements with solar Z Galactic PMS stars in the same mass range, but, surprisingly find no evidence for a systematic change in (M) over dot(acc) with Z. We show that literature accretion-rate studies are influenced by detection limits, and we suggest that (M) over dot(acc) may be controlled by factors other than Z(*), M-*, and age.
Resumo:
The masses and the evolutionary states of the progenitors of core-collapse supernovae are not well constrained by direct observations. Stellar evolution theory generally predicts that massive stars with initial masses less than about 30M_sol should undergo core-collapse when they are cool M-type supergiants. However the only two detections of a SN progenitor before explosion are SN1987A and SN1993J, and neither of these was an M-type supergiant. Attempting to identify the progenitors of supernovae is a difficult task, as precisely predicting the time of explosion of a massive star is impossible for obvious reasons. There are several different types of supernovae which have different spectral and photometric evolution, and how exactly these are related to the evolutionary states of the progenitor stars is not currently known. I will describe a novel project which may allow the direct identification of core-collapse supernovae progenitors on pre-explosion images of resolved, nearby galaxies. This project is now possible with the excellent image archives maintained by several facilities and will be enhanced by the new initiatives to create Virtual Observatories, the earliest of which ASTROVIRTEL is already producing results.
Resumo:
We analyze and interpret the oscillatory signal in the decay phase of the U-band light curve of a stellar megaflare observed on 2009 January 16 on the dM4.5e star YZ CMi. The oscillation is well approximated by an exponentially decaying harmonic function. The period of the oscillation is found to be 32 minutes, the decay time about 46 minutes, and the relative amplitude 15%. As this observational signature is typical of the longitudinal oscillations observed in solar flares at extreme ultraviolet and radio wavelengths, associated with standing slow magnetoacoustic waves, we suggest that this megaflare may be of a similar nature. In this scenario, macroscopic variations of the plasma parameters in the oscillations modulate the ejection of non-thermal electrons. The phase speed of the longitudinal (slow magnetoacoustic) waves in the flaring loop or arcade, the tube speed, of about 230 km s-1 would require a loop length of about 200 Mm. Other mechanisms, such as standing kink oscillations, are also considered.
Resumo:
The hot-JupiterWASP-10bwas reported by Maciejewski et al. to showtransit timing variations (TTVs) with an amplitude of ~3.5 min. These authors proposed that the observed TTVs were caused by a 0.1MJup perturbing companion with an orbital period of ~5.23 d, and hence, close to the outer 5:3 mean-motion resonance with WASP-10b. To test this scenario, we present eight new transit light curves of WASP-10b obtained with the Faulkes Telescope North and the Liverpool Telescope. The new light curves, together with 22 previously published ones, were modelled with a Markov Chain Monte Carlo transit fitting code. Transit depth differences reported forWASP-10b are thought to be due to starspot-induced brightness modulation of the host star. Assuming the star is brighter at the activity minimum, we favour a small planetary radius. We find Rp = 1.039+0.043 -0.049RJup in agreement with Johnson et al. and Maciejewski et al. Recent studies find no evidence for a significant eccentricity in this system. We present consistent system parameters for a circular orbit and refine the orbital ephemeris ofWASP-10b. Our homogeneously derived transit times do not support the previous claimed TTV signal, which was strongly dependent on two previously published transits that have been incorrectly normalized. Nevertheless, a linear ephemeris is not a statistically good fit to the transit times of WASP-10b. We show that the observed transit time variations are due to spot occultation features or systematics. We discuss and exemplify the effects of occultation spot features in the measured transit times and show that despite spot occultation during egress and ingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times of WASP-10b are consistent with a linear ephemeris with the exception of one transit (epoch 143) which is a partial transit. Therefore, there is currently no evidence for the existence of a companion to WASP-10b. Our results support the lack of TTVs of hot-Jupiters reported for the Kepler sample.
Resumo:
We employ Ca II K and Na I D interstellar absorption-line spectroscopy of early-type stars in the Large and Small Magellanic Clouds (LMC, SMC) to investigate the large- and small-scale structure in foreground intermediate- and high-velocity clouds (I/HVCs). Data include FLAMES-GIRAFFE Ca II K observations of 403 stars in four open clusters, plus FEROS or UVES spectra of 156 stars in the LMC and SMC. The FLAMES observations are amongst the most extensive probes to date of Ca II structures on ∼20 arcsec scales in Magellanic I/HVCs. From the FLAMES data within a 0 ∘.∘.∘.5 field of view, the Ca II K equivalent width in the I/HVC components towards three clusters varies by factors of ≥10. There are no detections of molecular gas in absorption at intermediate or high velocities, although molecular absorption is present at LMC and Galactic velocities towards some sightlines. The FEROS/UVES data show Ca II K I/HVC absorption in ∼60 per cent of sightlines. The range in the Ca II/Na I ratio in I/HVCs is from –0.45 to +1.5 dex, similar to previous measurements for I/HVCs. In 10 sightlines we find Ca II/O I ratios in I/HVC gas ranging from 0.2 to 1.5 dex below the solar value, indicating either dust or ionization effects. In nine sightlines I/HVC gas is detected in both H I and Ca II at similar velocities, implying that the two elements form part of the same structure.
Resumo:
We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusually long, lasting for about 130 d after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the Ni-56 mass produced as 0.046 +/- A 0.015 M-aS (TM). We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a Type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as D = 19.8 +/- A 3.0 Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour [(V - I)(0) = 0.85 mag]. Assuming it is a single star, we estimate its initial mass as M-ZAMS = 20 M-aS (TM). We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case, we estimate the upper limit for the initial zero-age main sequence (ZAMS) mass of the progenitor to be similar to 14-17 M-aS (TM). In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as similar to 0.55 x 10(51) erg, the pre-explosion radius as similar to 400 R-aS (TM), and the ejected envelope mass as similar to 15 M-aS (TM), which implies that the mass of the progenitor before explosion was similar to 16.5-17 M-aS (TM).
Resumo:
Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses similar to 1.1 M-aS (TM), hybrid WDs in a binary system may easily approach the Chandrasekhar mass (M-Ch) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-M-Ch hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 M-aS (TM) of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-M-Ch WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-M-Ch bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching M-Ch to be of the order of 1 per cent of the Galactic SN Ia rate.
Resumo:
Many high-state non-magnetic cataclysmic variables (CVs) exhibit blueshifted absorption or P-Cygni profiles associated with ultraviolet (UV) resonance lines. These features imply the existence of powerful accretion disc winds in CVs. Here, we use our Monte Carlo ionization and radiative transfer code to investigate whether disc wind models that produce realistic UV line profiles are also likely to generate observationally significant recombination line and continuum emission in the optical waveband. We also test whether outflows may be responsible for the single-peaked emission line profiles often seen in high-state CVs and for the weakness of the Balmer absorption edge (relative to simple models of optically thick accretion discs). We find that a standard disc wind model that is successful in reproducing the UV spectra of CVs also leaves a noticeable imprint on the optical spectrum, particularly for systems viewed at high inclination. The strongest optical wind-formed recombination lines are H alpha and He ii lambda 4686. We demonstrate that a higher density outflow model produces all the expected H and He lines and produces a recombination continuum that can fill in the Balmer jump at high inclinations. This model displays reasonable verisimilitude with the optical spectrum of RW Trianguli. No single-peaked emission is seen, although we observe a narrowing of the double-peaked emission lines from the base of the wind. Finally, we show that even denser models can produce a single-peaked H alpha line. On the basis of our results, we suggest that winds can modify, and perhaps even dominate, the line and continuum emission from CVs.