268 resultados para increased competition
Resumo:
Velvetgrass (Holcus lanatus L.), also known as Yorkshire fog grass, has evolved tolerance to high levels of arsenate, and this adaptation involves reduced accumulation of arsenate through the suppression of the high affinity phosphate-arsenate uptake system. To determine the role of P nutrition in arsenate tolerance, inhibition kinetics of arsenate influx by phosphate were determined. The concentration of inhibitor required to reduce maximum influx (V(max)) by 50%, K1, of phosphate inhibition of arsenate influx was 0.02 mol m-3 in both tolerant and nontolerant clones. This was compared with the concentration where influx is 50% of maximum, a K(m), for arsenate influx of 0.6 mol m-3 for tolerants and 0.025 mol m-3 for nontolerants and, therefore, phosphate was much more effective at inhibiting arsenate influx in tolerant genotypes. The high affinity phosphate uptake system is inducible under low plant phosphate status, this increasing plant phosphate status should increase tolerance by decreasing arsenate influx. Root extension in arsenate solutions of tolerant and nontolerant tillers grown under differing phosphate nutritional regimes showed that indeed, increased plant P status increased the tolerance to arsenate of both tolerant and nontolerant clones. That plant P status increased tolerance again argues that P nutrition has a critical role in arsenate tolerance. To determine if short term flux and solution culture studies were relevant to As and P accumulation in soils, soil and plant material from a range of As contaminated sites were analyzed. As predicted from the short-term competition studies, P was accumulated preferentially to As in arsenate tolerant clones growing on mine spoil soils even when acid extractable arsenate in the soils was much greater than acid extractable phosphate. Though phosphate was much more efficient at competing with arsenate for uptake, plants growing on arsenate contaminated land still accumulated considerable amounts of As. Plants from the differing habitats showed large variation in plant phosphate status, pasture plants having much higher P levels than plants growing on the most contaminated mine spoil soils. The selectivity of the phosphate-arsenate uptake system for phosphate compared with arsenate, coupled with the suppression of this uptake system enabled tolerant clones of the grass velvetgrass to grow on soils that were highly contaminated with arsenate and deficient in phosphate.
Resumo:
BACKGROUND: Pancreatic adenocarcinoma is a lethal disease with 5-year survival of less than 5%. 5-fluorouracil (5-FU) is a principal first-line therapy, but treatment only extends survival modestly and is seldom curative. Drug resistance and disease recurrence is typical and there is a pressing need to overcome this. To investigate acquired 5-FU resistance in pancreatic adenocarcinoma, we established chemoresistant monoclonal cell lines from the Panc 03.27 cell line by long-term exposure to increasing doses of 5-FU.
RESULTS: 5-FU-resistant cell lines exhibited increased expression of markers associated with multidrug resistance explaining their reduced sensitivity to 5-FU. In addition, 5-FU-resistant cell lines showed alterations typical for an epithelial-to-mesenchymal transition (EMT), including upregulation of mesenchymal markers and increased invasiveness. Microarray analysis revealed the L1CAM pathway as one of the most upregulated pathways in the chemoresistant clones, and a significant upregulation of L1CAM was seen on the RNA and protein level. In pancreatic cancer, expression of L1CAM is associated with a chemoresistant and migratory phenotype. Using esiRNA targeting L1CAM, or by blocking the extracellular part of L1CAM with antibodies, we show that the increased invasiveness observed in the chemoresistant cells functionally depends on L1CAM. Using esiRNA targeting β-catenin and/or Slug, we demonstrate that in the chemoresistant cell lines, L1CAM expression depends on Slug rather than β-catenin.
CONCLUSION: Our findings establish Slug-induced L1CAM expression as a mediator of a chemoresistant and migratory phenotype in pancreatic adenocarcinoma cells.
Resumo:
Prostate cancer development and progression are associated with alterations in expression and function of elements of cytokine networks, some of which can activate multiple signaling pathways. Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1, a regulator of cytokine signaling, may be implicated in the modulation of cellular events during carcinogenesis. This study was designed to investigate the functional significance of PIAS1 in models of human prostate cancer. We demonstrate for the first time that PIAS1 protein expression is significantly higher in malignant areas of clinical prostate cancer specimens than in normal tissues, thus suggesting a growth-promoting role for PIAS1. Expression of PIAS1 was observed in the majority of tested prostate cancer cell lines. In addition, we investigated the mechanism by which PIAS1 might promote prostate cancer and found that down-regulation of PIAS1 leads to decreased proliferation and colony formation ability of prostate cancer cell lines. This decrease correlates with cell cycle arrest in the G0/G1 phase, which is mediated by increased expression of p21(CIP1/WAF1). Furthermore, PIAS1 overexpression positively influences cell cycle progression and thereby stimulates proliferation, which can be mechanistically explained by a decrease in the levels of cellular p21. Taken together, our data reveal an important new role for PIAS1 in the regulation of cell proliferation in prostate cancer.
Resumo:
Introduced browsing animals negatively impact New Zealand's indigenous ecosystems. Eradicating introduced browsers is currently unfeasible at large scales, but culling since the 1960s has successfully reduced populations to a fraction of their earlier sizes. Here we ask whether culling of ungulates has allowed populations of woody plant species to recover across New Zealand forests. Using 73 pairs of permanent fenced exclosure and unfenced control plots, we found rapid increases in sapling densities within exclosures located in disturbed forests, particularly if a seedling bank was already present. Recovery was slower in thinning stands and hampered by dense fern cover. We inferred ungulate diet preference from species recovery rates inside exclosures to test whether culling increased abundance of preferred species across a national network of 574 unfenced permanent forest plots. Across this network, saplings were observed irrespective of their preference to ungulates in the 1970s, but preferred species were rarer within disturbed sites in the 1990s after long-term culling and despite nationwide increases in sapling densities. This indicates that preferred species are relatively heavily affected by browsing after culling, presumably because remaining animals will increase consumption of preferred species as competition is reduced. Our results clearly suggest that culling will not return preferred plants to the landscape immediately, even given suitable conditions for regeneration. Complete removal of ungulates rather than simply reducing their densities may be required for recovery in heavily browsed temperate forests, but since this is only feasible at small spatial scales, management efforts must target sites of high conservation value. © 2012 Elsevier Ltd.
Resumo:
WHIRLBOB, also known as STRIBOBr2, is an AEAD (Authenticated Encryption with Associated Data) algorithm derived from STRIBOBr1 and the Whirlpool hash algorithm. WHIRLBOB/STRIBOBr2 is a second round candidate in the CAESAR competition. As with STRIBOBr1, the reduced-size Sponge design has a strong provable security link with a standardized hash algorithm. The new design utilizes only the LPS or ρ component of Whirlpool in flexibly domain-separated BLNK Sponge mode. The number of rounds is increased from 10 to 12 as a countermeasure against Rebound Distinguishing attacks. The 8 ×8 - bit S-Box used by Whirlpool and WHIRLBOB is constructed from 4 ×4 - bit “MiniBoxes”. We report on fast constant-time Intel SSSE3 and ARM NEON SIMD WHIRLBOB implementations that keep full miniboxes in registers and access them via SIMD shuffles. This is an efficient countermeasure against AES-style cache timing side-channel attacks. Another main advantage of WHIRLBOB over STRIBOBr1 (and most other AEADs) is its greatly reduced implementation footprint on lightweight platforms. On many lower-end microcontrollers the total software footprint of π+BLNK = WHIRLBOB AEAD is less than half a kilobyte. We also report an FPGA implementation that requires 4,946 logic units for a single round of WHIRLBOB, which compares favorably to 7,972 required for Keccak / Keyak on the same target platform. The relatively small S-Box gate count also enables efficient 64-bit bitsliced straight-line implementations. We finally present some discussion and analysis on the relationships between WHIRLBOB, Whirlpool, the Russian GOST Streebog hash, and the recent draft Russian Encryption Standard Kuznyechik.
Resumo:
BACKGROUND: High density lipoproteins (HDL) protect against cardiovascular disease (CVD). However, increased serum amyloid-A (SAA) related inflammation may negate this property. This study investigated if SAA was related to CVD-burden.
METHODS: Subjects referred to the rapid chest pain clinic (n = 240) had atherosclerotic burden assessed by cardiac computerised tomography angiography. Subjects were classified as: no-CVD (n = 106), non-obstructive-CVD, stenosis<50% (n = 58) or moderate/significant-CVD, stenosis ≥50% (n = 76). HDL was subfractionated into HDL2 and HDL3 by rapid-ultracentrifugation. SAA-concentration was measured by ELISA and lecithin cholesterol acyltransferase (LCAT) activity measured by a fluorimetric assay.
RESULTS: We illustrated that serum-SAA and HDL3-SAA-concentration were higher and HDL3-LCAT-activity lower in the moderate/significant-CVD-group, compared to the no-CVD and non-obstructive-CVD-groups (percent differences: serum-SAA, +33% & +30%: HDL3-SAA, +65% and +39%: HDL3-LCAT, -6% & -3%; p < 0.05 for all comparisons). We also identified a positive correlation between serum-SAA and HDL3-SAA (r = 0.698; p < 0.001) and a negative correlation between HDL3-SAA and HDL3-LCAT-activity (r = -0.295; p = 0.003), while CVD-burden positively correlated with serum-SAA (r = 0.150; p < 0.05) and HDL3-SAA (r = 0.252; p < 0.001) and negatively correlated with HDL3-LCAT-activity (r = -0.182; p = 0.006). Additionally, multivariate regression analysis adjusted for age, gender, CRP and serum-SAA illustrated that HDL3-SAA was significantly associated with modifying CVD-risk of moderate/significant CVD-risk (p < 0.05).
CONCLUSION: This study has demonstrated increased SAA-related inflammation in subjects with moderate/significant CVD-burden, which appeared to impact on the antiatherogenic potential of HDL. We suggest that SAA may be a useful biomarker to illustrate increased CVD-burden, although this requires further investigation.
Resumo:
Milk in its natural form has a high food value, since it is comprised of a wide variety of nutrients which are essential for proper growth and maintenance of the human body. In recent decades, there has been an upsurge in milk consumption worldwide, especially in developing countries, and it is now forming a significant part of the diet for a high proportion of the global population. As a result of the increased demand, in addition to the growth in competition in the dairy market and the increasing complexity of the supply chain, some unscrupulous producers are indulging in milk fraud. This malpractice has become a common problem in the developing countries, which lack strict vigilance by food safety authorities. Milk is often subjected to fraud (by means of adulteration) for financial gain, but it can also be adulterated due to ill-informed attempts to improve hygiene conditions. Water is the most common adulterant used, which decreases the nutritional value of milk. If the water is contaminated, for example, with chemicals or pathogens, this poses a serious health risk for consumers. To the diluted milk, inferior cheaper materials may be added such as reconstituted milk powder, urea, and cane sugar, even more hazardous chemicals including melamine, formalin, caustic soda, and detergents. These additions have the potential to cause serious health-related problems. This review aims to investigate the impacts of milk fraud on nutrition and food safety, and it points out the potential adverse human health effects associated with the consumption of adulterated milk.
Resumo:
Routine molecular diagnostics modalities are unable to confidently detect low frequency mutations (<5-15%) that may indicate response to targeted therapies. We confirm the presence of a low frequency NRAS mutation in a rectal cancer patient using massively parallel sequencing when previous Sanger sequencing results proved negative and Q-PCR testing inconclusive. There is increasing evidence that these low frequency mutations may confer resistance to anti-EGFR therapy. In view of negative/inconclusive Sanger sequencing and Q-PCR results for NRAS mutations in a KRAS wt rectal case, the diagnostic biopsy and 4 distinct subpopulations of cells in the resection specimen after conventional chemo/radiotherapy were massively parallel sequenced using the Ion Torrent PGM. DNA was derived from FFPE rectal cancer tissue and amplicons produced using the Cancer Hotspot Panel V2 and sequenced using semiconductor technology. NRAS mutations were observed at varying frequencies in the patient biopsy (12.2%) and all four subpopulations of cells in the resection with an average frequency of 7.3% (lowest 2.6%). The results of the NGS also provided the mutational status of 49 other genes that may have prognostic or predictive value, including KRAS and PIK3CA. NGS technology has been postulated in diagnostics because of its capability to generate results in large panels of clinically meaningful genes in a cost-effective manner. This case illustrates another potential advantage of this technology: its use for detecting low frequency mutations that may influence therapeutic decisions in cancer treatment.
Resumo:
Increasing litter size has long been a goal of pig breeders and producers, and may have implications for pig (Sus scrofa domesticus) welfare. This paper reviews the scientific evidence on biological factors affecting sow and piglet welfare in relation to large litter size. It is concluded that, in a number of ways, large litter size is a risk factor for decreased animal welfare in pig production. Increased litter size is associated with increased piglet mortality, which is likely to be associated with significant negative animal welfare impacts. In surviving piglets, many of the causes of mortality can also occur in non-lethal forms that cause suffering. Intense teat competition may increase the likelihood that some piglets do not gain adequate access to milk, causing starvation in the short term and possibly long-term detriments to health. Also, increased litter size leads to more piglets with low birth weight which is associated with a variety of negative long-term effects. Finally, increased production pressure placed on sows bearing large litters may produce health and welfare concerns for the sow. However, possible biological approaches to mitigating health and welfare issues associated with large litters are being implemented. An important mitigation strategy is genetic selection encompassing traits that promote piglet survival, vitality and growth. Sow nutrition and the minimisation of stress during gestation could also contribute to improving outcomes in terms of piglet welfare. Awareness of the possible negative welfare consequences of large litter size in pigs should lead to further active measures being taken to mitigate the mentioned effects. © 2013 Universities Federation for Animal Welfare.