261 resultados para Moving block signalling
Resumo:
Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Emerging evidence supports a key role for NADPH oxidases in underlying angiogenic processes of these and other endothelial cells. Aims. To study the influence of Nox NADPH oxidases on the pro-angiogenic function of ECFCs. Methods. Human ECFCs isolated from umbilical cord blood were treated with pro-oxidant PMA and assessed in vitro, both under basal conditions and after siRNA knockdown of Nox4, a key endothelial NADPH oxidase isoform, alongside primary mature human aortic endothelial cells (HAoECs) for comparison, using an established scratch-wound assay as the functional end-point. Results. PMA (500nM for 8h) increased cell migration (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05) in a superoxide-dependent manner, as indicated by attenuation of this effect in the presence of PEG-SOD. Although HAoEC migration in response to PMA also tended to increase, this did not reach statistical significance. Notably, cell migration at 16h was reduced by Nox4 knockdown in ECFCs (control siRNA 53.4±3.5, Nox4 siRNA 35.1±4.9% closure; n=3, P<0.05), but not in HAoECs, whilst the pro-migratory effect of PMA in ECFCs was potentiated after Nox4 knockdown (control siRNA 53.4±3.5, +PMA 61.5±3.2% closure; n=3, P=NS; Nox4 siRNA 35.1±4.9, +PMA 53.0±4.9% closure; n=3, P<0.05). Conclusion. ECFC migration is enhanced by low concentrations of superoxide, to a greater extent compared to mature endothelial cells, and appears to be at least partly dependent upon NADPH oxidase, including a specific role for Nox4. Although, the precise contribution of endothelial Nox NADPH oxidases isoforms remains to be determined, it is clear that these findings may have significant implications for potential ECFC-based therapies for ischaemic disease, which is associated with an oxidative microenvironment.
Resumo:
Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Whilst increasing evidence supports a key role for reactive oxygen species (ROS), specifically those derived from Nox NADPH oxidases, in the underlying angiogenic processes of these and other endothelial cells, such studies investigating the role of redox signalling may be hampered by the standard inclusion of antioxidant agents in endothelial cell media, such as phenol red. Aims. To study the effects of antioxidants present in culture media on pro-angiogenic function of ECFCs in vitro. Methods. Human ECFCs isolated from umbilical cord blood were maintained in media with and without antioxidant components (EGM2 and phenol red-free DMEM, respectively) prior to treatment with pro-oxidant PMA and assessment of their in vitro migratory capacity using a scratch-wound assay to measure pro-angiogenic activity. Results. Our previous work in our group indicated that PMA (500nM) increased ECFC migration in a both a superoxide and NADPH oxidase-dependent manner (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05), as indicated by attenuation with PEG-SOD and VAS2870. However, inconsistencies in the data generated under varying experimental conditions led us to hypothesise that antioxidant agents in the standard ECFC media may be influencing these effects. Indeed, a direct comparison of cell migration between ECFCs incubated in EGM2 DMEM demonstrated a clear trend towards higher migration in the latter (EGM2 9.0±4.5, DMEM 22.7±6.4%; n=3, P=NS). Similar to our previous EGM2 studies, cell migration was potentiated by PMA (control 11.6±1.6, PMA 25.1±2.8%; n=3, P<0.05), but at a lower dose (100nM), which is consistent with a reduction in media antioxidants. Notably, this response was attenuated by VAS2870 (PMA 37.6±7.3, PMA+VAS2870 10.3±2.9%; n=6, P<0.05), underlining a likely role for Nox NADPH oxidases. Conclusion. Taken together, these data indicate that ECFC migration is sensitive to different endothelial cell growth media, which appears to be dependent upon their antioxidant content. Although further experiments, such as quantification of cellular superoxide generation by dihydroethidium fluorescence may be required to confirm a specific role for antioxidants, such blunting of ROS signalling in vitro is clearly an important consideration which may significantly impact upon data interpretation.
Resumo:
Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.
Resumo:
This paper proposes a method for the detection and classification of multiple events in an electrical power system in real-time, namely; islanding, high frequency events (loss of load) and low frequency events (loss of generation). This method is based on principal component analysis of frequency measurements and employs a moving window approach to combat the time-varying nature of power systems, thereby increasing overall situational awareness of the power system. Numerical case studies using both real data, collected from the UK power system, and simulated case studies, constructed using DigSilent PowerFactory, for islanding events, as well as both loss of load and generation dip events, are used to demonstrate the reliability of the proposed method.