283 resultados para Melnikov-holmes-marsden (mhm) Integrals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess the relationship between second and third trimester glycemic control and adverse outcomes in pregnant women with type 1 diabetes, as uncertainty exists about optimum glycemic targets.

RESEARCH DESIGN AND METHODS: Pregnancy outcomes were assessed prospectively in 725 women with type 1 diabetes from the Diabetes and Pre-eclampsia Intervention Trial. HbA1c (A1C) values at 26 and 34 weeks' gestation were categorized into five groups, the lowest, <6.0% (42 mmol/mol), being the reference. Average pre- and postprandial results from an eight-point capillary glucose profile the previous day were categorized into five groups, the lowest (preprandial <5.0 mmol/L and postprandial <6.0 mmol/L) being the reference.

RESULTS: An A1C of 6.0-6.4% (42-47 mmol/mol) at 26 weeks' gestation was associated with a significantly increased risk of large for gestational age (LGA) (odds ratio 1.7 [95% CI 1.0-3.0]) and an A1C of 6.5-6.9% (48-52 mmol/mol) with a significantly increased risk of preterm delivery (odds ratio 2.5 [95% CI 1.3-4.8]), pre-eclampsia (4.3 [1.7-10.8]), need for a neonatal glucose infusion (2.9 [1.5-5.6]), and a composite adverse outcome (3.2 [1.3-8.0]). These risks increased progressively with increasing A1C. Results were similar at 34 weeks' gestation. Glucose data showed less consistent trends, although the risk of a composite adverse outcome increased with preprandial glucose levels between 6.0 and 6.9 mmol/L at 34 weeks (3.3 [1.3-8.0]).

CONCLUSIONS: LGA increased significantly with an A1C ≥6.0 (42 mmol/mol) at 26 and 34 weeks' gestation and with other adverse outcomes with an A1C ≥6.5% (48 mmol/mol). The data suggest that there is clinical utility in regular measurement of A1C during pregnancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single-step lateral flow immunoassay (LFIA) was developed and validated for the rapid screening of paralytic shellfish toxins (PSTs) from a variety of shellfish species, at concentrations relevant to regulatory limits of 800 μg STX-diHCl equivalents/kg shellfish meat. A simple aqueous extraction protocol was performed within several minutes from sample homogenate. The qualitative result was generated after a 5 min run time using a portable reader which removed subjectivity from data interpretation. The test was designed to generate noncompliant results with samples containing approximately 800 μg of STX-diHCl/kg. The cross-reactivities in relation to STX, expressed as mean ± SD, were as follows: NEO: 128.9% ± 29%; GTX1&4: 5.7% ± 1.5%; GTX2&3: 23.4% ± 10.4%; dcSTX: 55.6% ± 10.9%; dcNEO: 28.0% ± 8.9%; dcGTX2&3: 8.3% ± 2.7%; C1&C2: 3.1% ± 1.2%; GTX5: 23.3% ± 14.4% (n = 5 LFIA lots). There were no indications of matrix effects from the different samples evaluated (mussels, scallops, oysters, clams, cockles) nor interference from other shellfish toxins (domoic acid, okadaic acid group). Naturally contaminated sample evaluations showed no false negative results were generated from a variety of different samples and profiles (n = 23), in comparison to reference methods (MBA method 959.08, LC-FD method 2005.06). External laboratory evaluations of naturally contaminated samples (n = 39) indicated good correlation with reference methods (MBA, LC-FD). This is the first LFIA which has been shown, through rigorous validation, to have the ability to detect most major PSTs in a reliable manner and will be a huge benefit to both industry and regulators, who need to perform rapid and reliable testing to ensure shellfish are safe to eat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.