270 resultados para Heterogeneous class
Resumo:
Liquid coordination complexes (LCCs) are a new class of liquid Lewis acids, prepared by combining an excess of a metal halide (e.g. GaCl3) with a basic donor molecule (e.g. amides, amines or phosphines). LCCs were used to catalyse oligomerisation of 1-decene to polyalphaolefins (PAOs). Molecular weight distribution and physical properties of the produced oils were compliant with those required for low viscosity synthetic (Group IV) lubricant base oils. Kinematic viscosities at 100 °C of ca. 4 or 6 cSt were obtained, along with viscosity indexes above 120 and pour points below −57 °C. In industry, to achieve similar properties, BF3 gas is used as a catalyst. LCCs are proposed as a safer and economically attractive alternative to BF3 gas for the production of polyalphaolefins.
Resumo:
Some members of a series of novel pyrrolo-1,5-benzoxazepines (PBOXs) potently induce apoptosis in a number of human cancerous cell lines including HL-60 cells and the drug-resistant chronic myelogenous leukaemia cell line, K562. The apoptotic induction seems to be independent of the mitochondrial peripheral-type benzodiazepine receptor (PBR), which binds these PBOXs with high affinity, due to a lack of correlation between their affinities for the receptor and their apoptotic potencies and their high apoptotic activity in PBR-deficient cells. PBOX-6, a potent member of the series, induces a transient activation of c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which correlates with induction of apoptosis. Expression of a cytoplasmic inhibitor of the JNK signal transduction pathway, Jip-1, prevents JNK activity and significantly reduces the extent of apoptosis induced by PBOX-6. This demonstrates the requirement for JNK in the cellular response to this apoptotic agent. In addition, PBOX-6 activates caspase-3-like proteases in K562 and HL-60 cells. The caspase-3 inhibitor, Z-Asp-Glu-Val-Asp-fluoromethylketone (z-DEVD-fmk), blocks caspase-3-like protease activity in both cell types but only prevents PBOX-6-induced apoptosis in HL-60 cells, suggesting that the requirement for caspase-3-like proteases in the apoptotic pathway is dependent on the cell type.
Resumo:
This paper provides a comparative analysis of working class consumer credit in Britain and France from the early twentieth century through to the 1980s. It indicates a number of similarities between the two nations in the earlier part of the period: in particular, in the operation of doorstep credit systems. For the British case study, we explore consumer finance offered by credit drapers (sometimes known as tallymen) whilst in France the paper explores a similar system that functioned in the coalmining communities around the city of Lens. Both methods operated on highly socialised relationships that established the trust on which credit was offered and long-term creditor/borrower relationships established. In the second part of the paper, we analyse the different trajectories taken in post-war France and Britain in this area of working class credit. In France this form of socialized credit gradually dwindled due to factors such as ‘Bancarisation’, which saw the major banks emerge as modern bureaucratized providers of credit for workers and their families. In contrast, in Britain the tallymen (and other related forms of doorstep credit providers) were offered a new lease of life in the 1960s and 1970s. This was a period during which British credit providers utilised multiple methods to evade the hire purchase controls put in place by post-war governments. Thus, whilst the British experience was one of fragmented consumer loan types (including the continuation of doorstep credit), the French experience (like elsewhere in Europe) was one of greater consolidation. The paper concludes by reflecting on the role of these developments in the creation of differential experiences of credit inclusion/exclusion in the two nations and the impact of this on financial inequality.
Resumo:
Heterogeneous catalysis is of great importance both industrially and academically. Rational design of heterogeneous catalysts is highly desirable, and the computational screening and design method is one of the most promising approaches for rational design of heterogeneous catalysts. Herein, we review some attempts towards the rational catalyst design using density functional theory from our group. Some general relationships and theories on the activity and selectivity are covered, such as the Brønsted–Evans–Polanyi relation, volcano curves/surfaces, chemical potentials, optimal adsorption energy window and energy descriptor of selectivity. Furthermore, the relations of these relationships and theories to the rational design are discussed, and some examples of computational screening and design method are given.
Resumo:
In 1748, Bartholomew Mosse, a curious combination of surgeon, obstetrician and entertainment impresario, established a pleasure garden on the northern fringes of Dublin. Ostensibly designed to fund the construction of a maternity hospital to be located adjacently, Mosse’s New Pleasure Gardens became one of the premier leisure resorts in Dublin. This was to have a profound effect on the city’s urban form. Within a few years the gardens became an epicentre of speculative development as the upper classes jostled to build their houses in the vicinity. Meanwhile, the creation nearby of Sackville Mall, a wide and generous strolling ground, established a whole section of the city dedicated to haute spectacle, display and leisure. Like other pleasure gardens in the British Isles, Mosse’s venture introduced new, commodified forms of entertainment. In the colonial context of eighteenth-century Ireland, however, ‘a land only recently won and insecurely held’ (Foster, 1988) by the Protestant Anglo-Irish settler class, the production of culture and spectacle was perhaps more significant than elsewhere. Indeed, the form of Mosse’s gardens echoed the private city gardens of a key figure in the Anglo-Irish aristocracy, while the hospital itself was constructed in a style of a Palladian country house, symbol of colonial presence in the countryside. However, like other pleasure gardens, the mix of music and alcohol, the heterogeneous crowd culled from across social and gender boundaries, and a landscape punctuated with secluded corners, meant that it also acquired a dubious reputation as a haunt of louche and illicit behaviours. The curious juxtaposition between a maternity hospital and pleasure garden, therefore, begins to assume other, hitherto hidden complexities. These are borne out by a closer examination of the architecture of the hospital, the shape of its landscape and the records of its patrons and patients.
Resumo:
There have been many attempts to find suitable replacements for fluorinated surfactants due to problems related to their bioaccumulation and resistance to biodegradation. Meeting the exceptional performances of these compounds, however, remains largely an unaccomplished challenge. Currently, a solution might be found through the synthesis of new classes of fluorinated compounds that possess reduced environmental impact by following the recommended strategies for their greener and safer design. In this article we report a novel approach by designing a family of catanionic fluorinated surfactants that shows potential for improved degradation, good water solubility, and low Krafft points. Furthermore, these surfactants exhibit excellent fluorine efficiency and effectiveness of surface tension reduction.
Resumo:
Wearable devices performing advanced bio-signal analysis algorithms are aimed to foster a revolution in healthcare provision of chronic cardiac diseases. In this context, energy efficiency is of paramount importance, as long-term monitoring must be ensured while relying on a tiny power source. Operating at a scaled supply voltage, just above the threshold voltage, effectively helps in saving substantial energy, but it makes circuits, and especially memories, more prone to errors, threatening the correct execution of algorithms. The use of error detection and correction codes may help to protect the entire memory content, however it incurs in large area and energy overheads which may not be compatible with the tight energy budgets of wearable systems. To cope with this challenge, in this paper we propose to limit the overhead of traditional schemes by selectively detecting and correcting errors only in data highly impacting the end-to-end quality of service of ultra-low power wearable electrocardiogram (ECG) devices. This partition adopts the protection of either significant words or significant bits of each data element, according to the application characteristics (statistical properties of the data in the application buffers), and its impact in determining the output. The proposed heterogeneous error protection scheme in real ECG signals allows substantial energy savings (11% in wearable devices) compared to state-of-the-art approaches, like ECC, in which the whole memory is protected against errors. At the same time, it also results in negligible output quality degradation in the evaluated power spectrum analysis application of ECG signals.
Resumo:
Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application.
Resumo:
Exascale computation is the next target of high performance computing. In the push to create exascale computing platforms, simply increasing the number of hardware devices is not an acceptable option given the limitations of power consumption, heat dissipation, and programming models which are designed for current hardware platforms. Instead, new hardware technologies, coupled with improved programming abstractions and more autonomous runtime systems, are required to achieve this goal. This position paper presents the design of a new runtime for a new heterogeneous hardware platform being developed to explore energy efficient, high performance computing. By combining a number of different technologies, this framework will both simplify the programming of current and future HPC applications, as well as automating the scheduling of data and computation across this new hardware platform. In particular, this work explores the use of FPGAs to achieve both the power and performance goals of exascale, as well as utilising the runtime to automatically effect dynamic configuration and reconfiguration of these platforms.
Resumo:
Power capping is a fundamental method for reducing the energy consumption of a wide range of modern computing environments, ranging from mobile embedded systems to datacentres. Unfortunately, maximising performance and system efficiency under static power caps remains challenging, while maximising performance under dynamic power caps has been largely unexplored. We present an adaptive power capping method that reduces the power consumption and maximizes the performance of heterogeneous SoCs for mobile and server platforms. Our technique combines power capping with coordinated DVFS, data partitioning and core allocations on a heterogeneous SoC with ARM processors and FPGA resources. We design our framework as a run-time system based on OpenMP and OpenCL to utilise the heterogeneous resources. We evaluate it through five data-parallel benchmarks on the Xilinx SoC which allows fully voltage and frequency control. Our experiments show a significant performance boost of 30% under dynamic power caps with concurrent execution on ARM and FPGA, compared to a naive separate approach.