313 resultados para Astrophysics - Solar and Stellar Astrophysics


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the detection of a 0.6 MJ extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76 d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE spectroscopy yields a planet of Rp= 1.22 RJ and Mp= 0.58 MJ around a slightly metal-poor solar-type host star, [Fe/H]=- 0.05 ± 0.10, of R*= 0.92 Rsun and M*= 1.00 Msun. WASP-25b is found to have a density of ?p= 0.32 ?J, a low value for a sub-Jupiter mass planet. We investigate the relationship of planetary radius to planetary equilibrium temperature and host star metallicity for transiting exoplanets with a similar mass to WASP-25b, finding that these two parameters explain the radii of most low-mass planets well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038±0.012). We find a planetary mass of 0.59±0.01 MJup and radius of 1.22-0.08+0.11 RJup. There is a linear trend in the radial velocities of 55±4 m s-1 y-1 indicating the presence of a long-period third body in the system with a mass ?0.45 MJup at a distance of ?1.2 AU from the host star. This third-body is either a low-mass star, a white dwarf, or another planet. The transit depth ((RP/Rstar)2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only 80%. Radial velocity and photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A130

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the discovery of a transiting planet with an orbital period of 3.05 days orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8 V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08±0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the Ca ii H and K ines and photometric variability with a period of 18.4 days and an amplitude of about 1%. We use a new method to show quantitatively that this periodic signal has a low false-alarm probability. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8 Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.92±0.06 M, 1.20±0.06 R). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of 4.055259 +/- 0.000008 d, Transit Epoch T-0 = 2 455 342.9688 +/- 0.0002 (HJD), of duration 0.1168 +/- 0.0008 d. A combined analysis of the WASP photometry, high-precision follow-up transit photometry, and radial velocities yield a planetary mass of M-pl = 0.28 +/- 0.03 M-J and a radius of R-pl = 1.27 +/- 0.04 R-J, resulting in a mean density of 0.14 +/- 0.02 rho(J). The stellar parameters are mass M-star = 0.93 +/- 0.03 M-circle dot, radius R-star = 0.895 +/- 0.23 R-circle dot, and age 9(-4)(+3) Gyr. Only WASP-17b and WASP-31b have lower densities than WASP-39b, although they are slightly more massive and highly irradiated planets. From our spectral analysis, the metallicity of WASP-39 is measured to be [Fe/H] = -0.12 +/- 0.1 dex, and we find the planet to have an equilibrium temperature of 1116(-32)(+33) K. Both values strengthen the observed empirical correlation between these parameters and the planetary radius for the known transiting Saturn-mass planets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present observations of the Rossiter–McLaughlin effect for the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b, and deduce the orientations of the planetary orbits with respect to the host stars’ rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin-orbit angles consistent with zero: λ=−4°.7 ± 4°.0, 15°+33−43 and Graphic, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, λ=Graphic. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R sun in the Northern hemisphere, and the independent discovery of HAT-P-30b/WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, Faulkes Telescope South, and TRAPPIST photometry, with CORALIE, SOPHIE, and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 ± 0.06 MJ and radius of 1.32 ± 0.05RJ , and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 ± 0.09 MJ , radius of 1.67 ± 0.10 RJ , and orbits in 2.14 days, while HAT-P-30b/WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 ± 0.05 MJ and radius of 1.42 ± 0.03 RJ , agreeing with values of 0.71 ± 0.03 MJ and 1.34 ± 0.07 RJ reported for HAT-P-30b.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present high-precision transit observations of the exoplanet WASP-21b, obtained with the Rapid Imager to Search for Exoplanets instrument mounted on the 2.0-m Liverpool Telescope. A transit model is fitted, coupled with a Markov chain Monte Carlo routine, to derive accurate system parameters. The two new high-precision transits allow us to estimate the stellar density directly from the light curve. Our analysis suggests that WASP-21 is evolving off the main sequence which led to a previous overestimation of the stellar density. Using isochrone interpolation, we find a stellar mass of 0.86 ± 0.04 Msun, which is significantly lower than previously reported (1.01 ± 0.03 Msun). Consequently, we find a lower planetary mass of 0.27 ± 0.01 MJup. A lower inclination (87?4 ± 0?3) is also found for the system than previously reported, resulting in a slightly larger stellar (R*= 1.10 ± 0.03 Rsun) and planetary radius (Rp= 1.14 ± 0.04 RJup). The planet radius suggests a hydrogen/helium composition with no core which strengthens the correlation between planetary density and host star metallicity. A new ephemeris is determined for the system, i.e. T0= 245 5084.519 74 ± 0.000 20 (HJD) and P= 4.322 5060 ± 0.000 0031 d. We found no transit timing variations in WASP-21b.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the discovery and initial characterization of Qatar-1b, a hot Jupiter-orbiting metal-rich K dwarf star, the first planet discovered by the Qatar Exoplanet Survey. We describe the strategy used to select candidate transiting planets from photometry generated by the Qatar Exoplanet Survey camera array. We examine the rate of astrophysical and other false positives found during the spectroscopic reconnaissance of the initial batch of candidates. A simultaneous fit to the follow-up radial velocities and photometry of Qatar-1b yields a planetary mass of 1.09 ± 0.08 MJ and a radius of 1.16 ± 0.05 RJ. The orbital period and separation are 1.420 033 ± 0.000 016 d and 0.023 43 ± 0.000 26 au for an orbit assumed to be circular. The stellar density, effective temperature and rotation rate indicate an age greater than 4 Gyr for the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 d.The current uncertainty in its impact parameter (0 < b < 0.46) results in poorly definedstellar and planetary radii. To better constrain the impact parameter, we have obtained highprecisiontransit observations with the rapid imager to search for exoplanets (RISE) instrumentmounted on 2.0-m Liverpool Telescope. We present four new transits which are fitted witha Markov chain Monte Carlo routine to derive accurate system parameters. We found anorbital inclination of 85. ◦ 2 ± 0. ◦ 3 resulting in stellar and planetary radii of 1.56 ± 0.04 Rand 1.39 ± 0.05RJup, respectively. This suggests that the host star has evolved off the mainsequence and is in the hydrogen-shell-burning phase.We also discuss how the limb darkeningaffects the derived system parameters.With a density of 0.17ρJ,WASP-13b joins the group oflow-density planets whose radii are too large to be explained by standard irradiation models.We derive a new ephemeris for the system, T0 = 245 5575.5136 ± 0.0016 (HJD) and P =4.353 011 ± 0.000 013 d. The planet equilibrium temperature (Tequ = 1500 K) and the brighthost star (V = 10.4mag) make it a good candidate for follow-up atmospheric studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO+, N2H+, H2O, CO2, and CH3OH. The only molecule significantly affected by the X-ray ionization is N2H+, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H2 and C+/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable "dead zone" where accretion is suppressed, present in a layer, Z/R lsim 0.1-0.2, in the disk midplane, within R ˜ 200 AU.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use images of high spatial and temporal resolution, obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, to reveal how the generation of transverse waves in Type I spicules is a direct result of longitudinal oscillations occurring in the photosphere. Here we show how pressure oscillations, with periodicities in the range of 130–440 s, manifest in small-scale photospheric magnetic bright points, and generate kink waves in the Sun’s outer atmosphere with transverse velocities approaching the local sound speed. Through comparison of our observations with advanced two-dimensional magnetohydrodynamic simulations, we provide evidence for how magnetoacoustic oscillations, generated at the solar surface, funnel upward along Type I spicule structures, before undergoing longitudinal-to-transverse mode conversion into waves at twice the initial driving frequency. The resulting kink modes are visible in chromospheric plasma, with periodicities of 65–220 s, and amplitudes often exceeding 400 km. A sausage mode oscillation also arises as a consequence of the photospheric driver, which is visible in both simulated and observational time series. We conclude that the mode conversion and period modi?cation is a direct consequence of the 90? phase shift encompassing opposite sides of the photospheric driver. The chromospheric energy ?ux of these waves are estimated to be ˜3 × 105 W m-2, which indicates that they are suf?ciently energetic to accelerate the solar wind and heat the localized corona to its multi-million degree temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context. Radiative transfer calculations have predicted intensity enhancements for optically thick emission lines, as opposed to the normal intensity reductions, for astrophysical plasmas under certain conditions. In particular, the results are predicted to be dependent both on the geometry of the emitting plasma and the orientation of the observer. Hence in principle the detection of intensity enhancement may provide a way of determining the geometry of an unresolved astronomical source.
Aims. To investigate such enhancements we have analysed a sample of active late-type stars observed in the far ultraviolet spectral region.
Methods. Emission lines of O vi in the FUSE satellite spectra of ϵ Eri, II Peg and Prox Cen were searched for intensity enhancements due to opacity.
Results. We have found strong evidence for line intensity enhancements due to opacity during active or flare-like activity for all three stars. The O vi 1032/1038 line intensity ratios, predicted to have a value of 2.0 in the optically thin case, are found to be up to ~30% larger during several orbital phases.
Conclusions. Our measurements, combined with radiative transfer models, allow us to constrain both the geometry of the O vi emitting regions in our stellar sources and the orientation of the observer. A spherical emitting plasma can be ruled out, as this would lead to no intensity enhancement. In addition, the theory tells us that the line-of-sight to the plasma must be close to perpendicular to its surface, as observations at small angles to the surface lead to either no intensity enhancement or the usual line intensity decrease over the optically thin value. For the future, we outline a laboratory experiment, that could be undertaken with current facilities, which would provide an unequivocal test of predictions of line intensity enhancement due to opacity, in particular the dependence on plasma geometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

UVES interstellar observations from the Paranal Observatory Project are presented for early-type stars located in the line of sight to the nearby open clusters IC 2391 (Omni Vel) and NGC 6475 (M7), with spectroscopic resolution R similar to 80 000 and signal-to-noise ratios in the Ti II (3383 angstrom), Ca II K, CH+ (4232 angstrom), Na I D and K I (7698 angstrom) lines of several hundred. The sightlines are a mixture of cluster and non-cluster objects. A total of 22 early-type stars (A and B type) are present in our sample towards IC 2391, with 21 towards NGC 6475/M7, and enable us to probe for differences in column density on scales from similar to 0.07 to 7.3 and similar to 0.05 to 4.9 pc in the respective clusters. Additionally, towards Praesepe the Na I D interstellar variation only is probed towards 13 sightlines and transverse scales of similar to 0.16-10.7 pc at R = 70 000. Towards IC 2391 variations are found in Ti II, Ca II K and Na I D column density in different sightlines of up to 0.7, 1.0 and 1.8 dex (excluding one star), respectively. This kind of variability correlates well with the Hipparcos parallax of the objects, and probes structure within the Local Bubble. For cluster-only objects the variations are 0.3, 0.3 and 0.5 dex, respectively. For the field of view towards NGC6475 the corresponding maximum variations are somewhat smaller, being 0.5, 0.3, 0.8 and 1.0 dex for Ti II, Ca II K, Na I and K I, respectively, for all objects and 0.4, 0.2, 0.6 and 0.7 dex for the cluster-only objects. These are uncorrelated with parallax, and again demonstrate that Ca II K tends to be more smoothly distributed than Na I D. A few likely cluster sightlines show evidence for CH+ and variations in this molecular species of a factor of 10 in equivalent width over sub-pc scales. Towards Praesepe variation in interstellar Na I D is small, being a maximum of only similar to 0.4 dex (including measurement errors), but with fewer sightlines studied. Overall, the scatter in the data is similar for the singly ionized species Ti II and Ca II, lending more support to the hypothesis that these two species sample similar parts of the interstellar medium (ISM). This also appears to be the case for the neutral species Na I D and K I in the one cluster studied. Finally, multiple-epoch observations from a variety of archive sources are used to search for astronomical unit (au) scale structure in the ISM towards 46 sightlines. There are tentative indications of structure on scales of tens to thousands of au for three sightlines. Future observations will confirm the veracity or otherwise of the time-variable components and others presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using direct numerical magneto-hydrodynamic (MHD) simulations, we demonstrate the evidence of two physically different types of vortex motions in the solar photosphere. Baroclinic motions of plasma in non-magnetic granules are the primary source of vorticity in granular regions of the solar photosphere, however, there is a significantly more efficient mechanism of vorticity production in strongly magnetised intergranular lanes. These swirly motions of plasma in intergranular magnetic field concentrations could be responsible for the generation of different types of MHD wave modes, for example, kink, sausage and torsional Alfven waves. These waves could transport a relevant amount of energy from the lower solar atmosphere and contribute to coronal plasma heating.