262 resultados para Arsenic remediation
Resumo:
Biomass and phosphorus allocation were determined in arsenate tolerant and non-tolerant clones of the grass Holcus lanatus L. in both solution culture and in soil. Arsenate is a phosphate analogue and is taken up by the phosphate uptake system. Tolerance to arsenate in this grass is achieved by suppression of arsenate (and phosphate) influx. When clones differing in their arsenate tolerance were grown in solution culture with a range of phosphate levels, a tolerant clone did not fare as well as a non-tolerant at low levels of phosphate nutrition in that it had reduced shoot biomass production, increased biomass allocation to the roots and lower shoot phosphorus concentration. At a higher level of phosphate nutrition there was little or no difference in these parameters, suggesting that differences at lower levels of phosphate nutrition were due solely to differences in the rates of phosphate accumulation. In experiments in sterile soil (potting compost) the situation was more complicated with tolerant plants having lower growth rates but higher phosphorus concentrations. The gene for arsenate tolerance is polymorphic in arsenate uncontaminated populations. When phosphorus concentration of tolerant phenotypes was determined in one such population, again tolerants had a higher phosphorus status than non-tolerants. Tolerants also had higher rates of vesicular-arbuscular mycorrhizal (VAM) infection. The ecological implications of these results are that it appears that suppression of the high affinity uptake system, is at least in part, compensated by increased mycorrhizal infection. © 1994 Kluwer Academic Publishers.
Resumo:
One of the most cost effective methods of pollution remediation is through natural attenuation where the resident microorganisms are responsible for the breakdown of pollutants (Dou et al. 2008). Other forms of bioremediation - such as analogue enrichment, composting and bio-venting - also use the microbes already present in a contaminated site to enhance the remediation process. In order for these approaches to be successful, in an industrial setting, some form of monitoring needs to take place enabling conclusions to be drawn about the degradation processes occurring. In this review we look at some key molecular biology techniques that have the potential to act as a monitoring tool for industries dealing with contaminated land.
Resumo:
Background The use of technology in healthcare settings is on the increase and may represent a cost-effective means of delivering rehabilitation. Reductions in treatment time, and delivery in the home, are also thought to be benefits of this approach. Children and adolescents with brain injury often experience deficits in memory and executive functioning that can negatively affect their school work, social lives, and future occupations. Effective interventions that can be delivered at home, without the need for high-cost clinical involvement, could provide a means to address a current lack of provision. We have systematically reviewed studies examining the effects of technology-based interventions for the rehabilitation of deficits in memory and executive functioning in children and adolescents with acquired brain injury. Objectives To assess the effects of technology-based interventions compared to placebo intervention, no treatment, or other types of intervention, on the executive functioning and memory of children and adolescents with acquired brain injury. Search methods We ran the search on the 30 September 2015. We searched the Cochrane Injuries Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), EMBASE Classic + EMBASE (OvidSP), ISI Web of Science (SCI-EXPANDED, SSCI, CPCI-S, and CPSI-SSH), CINAHL Plus (EBSCO), two other databases, and clinical trials registers. We also searched the internet, screened reference lists, and contacted authors of included studies. Selection criteria Randomised controlled trials comparing the use of a technological aid for the rehabilitation of children and adolescents with memory or executive-functioning deficits with placebo, no treatment, or another intervention. Data collection and analysis Two review authors independently reviewed titles and abstracts identified by the search strategy. Following retrieval of full-text manuscripts, two review authors independently performed data extraction and assessed the risk of bias. Main results Four studies (involving 206 participants) met the inclusion criteria for this review. Three studies, involving 194 participants, assessed the effects of online interventions to target executive functioning (that is monitoring and changing behaviour, problem solving, planning, etc.). These studies, which were all conducted by the same research team, compared online interventions against a 'placebo' (participants were given internet resources on brain injury). The interventions were delivered in the family home with additional support or training, or both, from a psychologist or doctoral student. The fourth study investigated the use of a computer program to target memory in addition to components of executive functioning (that is attention, organisation, and problem solving). No information on the study setting was provided, however a speech-language pathologist, teacher, or occupational therapist accompanied participants. Two studies assessed adolescents and young adults with mild to severe traumatic brain injury (TBI), while the remaining two studies assessed children and adolescents with moderate to severe TBI. Risk of bias We assessed the risk of selection bias as low for three studies and unclear for one study. Allocation bias was high in two studies, unclear in one study, and low in one study. Only one study (n = 120) was able to conceal allocation from participants, therefore overall selection bias was assessed as high. One study took steps to conceal assessors from allocation (low risk of detection bias), while the other three did not do so (high risk of detection bias). Primary outcome 1: Executive functioning: Technology-based intervention versus placebo Results from meta-analysis of three studies (n = 194) comparing online interventions with a placebo for children and adolescents with TBI, favoured the intervention immediately post-treatment (standardised mean difference (SMD) -0.37, 95% confidence interval (CI) -0.66 to -0.09; P = 0.62; I2 = 0%). (As there is no 'gold standard' measure in the field, we have not translated the SMD back to any particular scale.) This result is thought to represent only a small to medium effect size (using Cohen’s rule of thumb, where 0.2 is a small effect, 0.5 a medium one, and 0.8 or above is a large effect); this is unlikely to have a clinically important effect on the participant. The fourth study (n = 12) reported differences between the intervention and control groups on problem solving (an important component of executive functioning). No means or standard deviations were presented for this outcome, therefore an effect size could not be calculated. The quality of evidence for this outcome according to GRADE was very low. This means future research is highly likely to change the estimate of effect. Primary outcome 2: Memory One small study (n = 12) reported a statistically significant difference in improvement in sentence recall between the intervention and control group following an eight-week remediation programme. No means or standard deviations were presented for this outcome, therefore an effect size could not be calculated. Secondary outcomes Two studies (n = 158) reported on anxiety/depression as measured by the Child Behavior Checklist (CBCL) and were included in a meta-analysis. We found no evidence of an effect with the intervention (mean difference -5.59, 95% CI -11.46 to 0.28; I2 = 53%). The GRADE quality of evidence for this outcome was very low, meaning future research is likely to change the estimate of effect. A single study sought to record adverse events and reported none. Two studies reported on use of the intervention (range 0 to 13 and 1 to 24 sessions). One study reported on social functioning/social competence and found no effect. The included studies reported no data for other secondary outcomes (that is quality of life and academic achievement). Authors' conclusions This review provides low-quality evidence for the use of technology-based interventions in the rehabilitation of executive functions and memory for children and adolescents with TBI. As all of the included studies contained relatively small numbers of participants (12 to 120), our findings should be interpreted with caution. The involvement of a clinician or therapist, rather than use of the technology, may have led to the success of these interventions. Future research should seek to replicate these findings with larger samples, in other regions, using ecologically valid outcome measures, and reduced clinician involvement.
Resumo:
Mycotoxins and heavy metals are ubiquitous in the environment and contaminate many foods. The widespread use of pesticides in crop production to control disease contributes further to the chemical contamination of foods. Thus multiple chemical contaminants threaten the safety of many food commodities; hence the present study used maize as a model crop to identify the severity in terms of human exposure when multiple contaminants are present. High Content Analysis (HCA) measuring multiple endpoints was used to determine cytotoxicity of complex mixtures of mycotoxins, heavy metals and pesticides. Endpoints included nuclear intensity (NI), nuclear area (NA), plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial mass (MM). At concentrations representing legal limits of each individual contaminant in maize (3. ng/ml ochratoxin A (OTA), 1. μg/ml fumonisin B1 (FB1), 2. ng/ml aflatoxin B1 (AFB1), 100. ng/ml cadmium (Cd), 150. ng/ml arsenic (As), 50. ng/ml chlorpyrifos (CP) and 5. μg/ml pirimiphos methyl (PM), the mixtures (tertiary mycotoxins plus Cd/As) and (tertiary mycotoxins plus Cd/As/CP/PM) were cytotoxic for NA and MM endpoints with a difference of up to 13.6% (. p≤. 0.0001) and 12% (. p≤. 0.0001) respectively from control values. The most cytotoxic mixture was (tertiary mycotoxins plus Cd/As/CP/PM) across all 4 endpoints (NA, NI, MM and MMP) with increases up to 61.3%, 23.0%, 61.4% and 36.3% (. p≤. 0.0001) respectively. Synergy was evident for two endpoints (NI and MM) at concentrations contaminating maize above legal limits, with differences between expected and measured values of (6.2-12.4% (. p≤. 0.05-. p≤. 0.001) and 4.5-12.3% (. p≤. 0.05-. p≤. 0.001) for NI and MM, respectively. The study introduces for the first time, a holistic approach to identify the impact in terms of toxicity to humans when multiple chemical contaminants are present in foodstuffs. Governmental regulatory bodies must begin to contemplate how to safeguard the population when such mixtures of contaminants are found in foods and this study starts to address this critical issue.
Resumo:
The environmental quality of land is often assessed by the calculation of threshold values which aim to differentiate between concentrations of elements based on whether the soils are in residential or industrial sites. In Europe, for example, soil guideline values exist for agricultural and grazing land. A threshold is often set to differentiate between concentrations of the element that naturally occur in the soil and concentrations that result from diffuse anthropogenic sources. Regional geochemistry and, in particular, single component geochemical maps are increasingly being used to determine these baseline environmental assessments. The key question raised in this paper is whether the geochemical map can provide an accurate interpretation on its own. Implicit is the thought that single component geochemical maps represent absolute abundances. However,because of the compositional (closed) nature of the data univariate geochemical maps cannot be compared directly with one another.. As a result, any interpretation based on them is vulnerable to spurious correlation problems. What does this mean for soil geochemistry mapping, baseline quality documentation, soil resource assessment or risk evaluation? Despite the limitation of relative abundances, individual raw geochemical maps are deemed fundamental to several applications of geochemical maps including environmental assessments. However, element toxicity is related to its bioavailable concentration, which is lowered if its source is mixed with another source. Elements interact, for example under reducing conditions with iron oxides, its solid state is lost and arsenic becomes soluble and mobile. Both of these matters may be more adequately dealt with if a single component map is not interpreted in isolation to determine baseline and threshold assessments. A range of alternative compositionally compliant representations based on log-ratio and log-contrast approaches are explored to supplement the classical single component maps for environmental assessment. Case study examples are shown based on the Tellus soil geochemical dataset, covering Northern Ireland and the results of in vitro oral bioaccessibility testing carried out on a sub-set of archived Tellus Survey shallow soils following the Unified BARGE (Bioaccessibility Research Group of Europe).
Resumo:
High-resolution soft x-ray photoemission spectroscopy (SXPS) has been used to study the high-temperature thermal stability of ultra-thin atomic layer deposited (ALD) Al2O3 layers (~1 nm) on sulfur passivated and native oxide covered InAs surfaces. While the arsenic oxides were removed from both interfaces following a 600 °C anneal, a residual indium oxide signal remained. No significant differences were observed between the sulfur passivated and native oxide surfaces other than the thickness of the interfacial oxide layer while the Al2O3 stoichiometry remained unaffected by the anneals. The energy band offsets were determined for the Al2O3 on the sulfur passivated InAs surface using both valence band edge and shallow core-level photoemission measurements.
Resumo:
A substantial proportion of aetiological risks for many cancers and chronic diseases remain unexplained. Using geochemical soil and stream water samples collected as part of the Tellus Project studies, current research is investigating naturally occurring background levels of potentially toxic elements (PTEs) in soils and stream sediments and their possible relationship with progressive chronic kidney disease (CKD). The Tellus geological mapping project, Geological Survey Northern Ireland, collected soil sediment and stream water samples on a grid of one sample site every 2 km2 across the rural areas of Northern Ireland resulting in an excess of 6800 soil sampling locations and more than 5800 locations for stream water sampling. Accumulation of several PTEs including arsenic, cadmium, chromium, lead and mercury have been linked with human health and implicated in renal function decline. The hypothesis is that long-term exposure will result in cumulative exposure to PTEs and act as risk factor(s) for cancer and diabetes related CKD and its progression. The ‘bioavailable’ fraction of total PTE soil concentration depends on the ‘bioaccessible’ proportion through an exposure pathway. Recent work has explored this bioaccessible fraction for a range of PTEs across Northern Ireland. In this study the compositional nature of the multivariate geochemical PTE variables and bioaccessible data is explored to augment the investigation into the potential relationship between PTEs, bioaccessibility and disease data.