261 resultados para vascular aging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This pilot study was aimed to establish techniques for assessing and observing trends in endothelial function, antioxidant status and vascular compliance in newly diagnosed HFE haemochromatosis during the first year of venesection.

Patients/methods: Untreated newly diagnosed HFE haemochromatosis patients were tested for baseline liver function, iron indices, lipid profile, markers of endothelial function, anti-oxidant status and vascular compliance. Following baseline assessment, subjects attended at 6-weeks and at 3, 6, 9 and 12-months for follow-up studies.

Results: Ten patients were recruited (M = 8, F = 2, mean age = 51 years). Venesection significantly increased high density lipoproteins at 12-months (1.25 mmol/L vs. 1.37 mmol/L, p = 0.01). However, venesection did not significantly affect lipid hydroperoxides, intracellular and vascular cell adhesion molecules or high sensitivity C-reactive protein (0.57 mu mol/L vs. 0.51 mu mol/L, p = 0.45, 427.4 ng/ml vs. 307.22 ng/ml, p = 0.54, 517.70 ng/ml vs. 377.50 ng/ml, p = 0.51 and 290.75 mu g/dL vs. 224.26 mu g/dL, p = 0.25). There was also no significant effect of venesection on anti-oxidant status or pulse wave velocity (9.65 m/s vs. 8.74 m/s, p = 0.34).

Conclusions: Venesection significantly reduced high density lipoproteins but was not associated with significant changes in endothelial function, anti-oxidant status or vascular compliance. Larger studies using this established methodology are required to clarify this relationship further. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The identification of pre-clinical microvascular damage in hypertension by non-invasive techniques has proved frustrating for clinicians. This proof of concept study investigated whether entropy, a novel summary measure for characterizing blood velocity waveforms, is altered in participants with hypertension and may therefore be useful in risk stratification.

Methods: Doppler ultrasound waveforms were obtained from the carotid and retrobulbar circulation in 42 participants with uncomplicated grade 1 hypertension (mean systolic/diastolic blood pressure (BP) 142/92 mmHg), and 26 healthy controls (mean systolic/diastolic BP 116/69 mmHg). Mean wavelet entropy was derived from flow-velocity data and compared with traditional haemodynamic measures of microvascular function, namely the resistive and pulsatility indices.

Results: Entropy, was significantly higher in control participants in the central retinal artery (CRA) (differential mean 0.11 (standard error 0.05 cms(-1)), CI 0.009 to 0.219, p 0.017) and ophthalmic artery (0.12 (0.05), CI 0.004 to 0.215, p 0.04). In comparison, the resistive index (0.12 (0.05), CI 0.005 to 0.226, p 0.029) and pulsatility index (0.96 (0.38), CI 0.19 to 1.72, p 0.015) showed significant differences between groups in the CRA alone. Regression analysis indicated that entropy was significantly influenced by age and systolic blood pressure (r values 0.4-0.6). None of the measures were significantly altered in the larger conduit vessel.

Conclusion: This is the first application of entropy to human blood velocity waveform analysis and shows that this new technique has the ability to discriminate health from early hypertensive disease, thereby promoting the early identification of cardiovascular disease in a young hypertensive population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YAl2p/Mg-14Li-1Al composite was made by a stir-casting technique. The aging behavior of the composite was investigated using hardness test, differential scanning calorimetry, and X-ray diffraction. The results show that the microhardness variations of both the matrix alloy and its composite are related to the precipitation and decomposition of θ-MgLi2Al phase. The strengthening of the composite is from the addition of YAl2 particulates and the precipitation in matrix alloy. The former contribution is stable, but the latter is unstable and depends on the aging behavior. The addition of YAl2 particulates delays occurring of the aging behavior of composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The China Low Activation Martensitic (CLAM) steel has been developed as a candidate structural material for future fusion reactors. It is essential to investigate the evolution of microstructure and changes of mechanical properties of CLAM steel during thermal exposure. In this study, the long-term thermal aging of the CLAM steel has been carried out in air at 600 °C and 650 °C for 1100 h, 3000 h and 5000 h. The microstructural evolution with aging time was studied, including characteristics of the growth of M23C6 carbides and the formation of Laves-phase precipitates as well as the evolved subgrains. The microstructural evolution leads to the changes of mechanical properties of the CLAM steel. The Ductile–Brittle Transition Temperature (DBTT) increases significantly during the thermal aging, which is related to the formation of Laves-phase in the steel matrix. The possible mechanism of stabilizing microstructure during the thermal exposure has been analyzed based on the interaction between M23C6 carbides and subgrain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Raman spectroscopy is an effective probe of advanced glycation end products (AGEs) in Bruch's membrane. However, because it is the outermost layer of the retina, this extracellular matrix is difficult to analyze in vivo with current technology. The sclera shares many compositional characteristics with Bruch's membrane, but it is much easier to access for in vivo Raman analysis. This study investigated whether sclera could act as a surrogate tissue for Raman-based investigation of pathogenic AGEs in Bruch's membrane.

METHODS. Human sclera and Bruch's membrane were dissected from postmortem eyes (n = 67) across a wide age range (33-92 years) and were probed by Raman spectroscopy. The biochemical composition, AGEs, and their age-related trends were determined from data reduction of the Raman spectra and compared for the two tissues.

RESULTS. Raman microscopy demonstrated that Bruch's membrane and sclera are composed of a similar range of biomolecules but with distinct relative quantities, such as in the heme/collagen and the elastin/collagen ratios. Both tissues accumulated AGEs, and these correlated with chronological age (R(2) = 0.824 and R(2) = 0.717 for sclera and Bruch's membrane, respectively). The sclera accumulated AGE adducts at a lower rate than Bruch's membrane, and the models of overall age-related changes exhibited a lower rate (one-fourth that of Bruch's membrane) but a significant increase with age (P <0.05).

CONCLUSIONS. The results suggest that the sclera is a viable surrogate marker for estimating AGE accumulation in Bruch's membrane and for reliably predicting chronological age. These findings also suggest that sclera could be a useful target tissue for future patient-based, Raman spectroscopy studies. (Invest Ophthalmol Vis Sci 2011;52:1593-1598) DOI:10.1167/iovs.10-6554

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.