330 resultados para ethoexperimental neuroscience
Resumo:
Consideration was given to means of increasing the reliability and muscle specificity of paired associative stimulation (PAS) by utilising the phenomenon of crossed-facilitation. Eight participants completed three separate sessions: isometric flexor contractions of the left wrist at 20% of maximum voluntary contraction (MVC) simultaneously with PAS (20s intervals; 14 min duration) delivered at the right median nerve and left primary motor cortex (MI); isometric contractions at 20% of MVC: and PAS only ( 14 min). Eight further participants completed two sessions of longer duration PAS (28 min): either alone or in conjunction with flexion contractions of the left wrist. Thirty motor potentials (MEPs) were evoked in the right flexor (rFCR) and extensor (rECR) carpi radialis muscles by magnetic stimulation of left M1 Prior to the interventions, immediately post-intervention, and 10 min post-intervention. Both 14 and 28 min of combined PAS and (left wrist flexion) contractions resulted in reliable increases in rFCR MEP amplitude, which were not present in rECR. In the PAS only conditions, 14 min of stimulation gave rise to unreliable increases in MEP amplitudes in rFCR and rECR, whereas 28 min of PAS induced small (unreliable) changes only for rFCR. These results support the conclusion that changes in the excitability of the corticospinal pathway induced by PAS interact with those associated with contraction of the muscles ipsilateral to the site of cortical stimulation. Furthermore, focal contractions applied by the opposite limb increase the extent and muscle specificity of the induced changes in excitability associated with PAS. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Previous studies have attempted to identify sources of contextual information which can facilitate dual adaptation to two variants of a novel environment, which are normally prone to interference. The type of contextual information previously used can be grouped into two broad categories: that which is arbitrary to the motor system, such as a colour cue, and that which is based on an internal property of the motor system, such as a change in movement effector. The experiments reported here examined whether associating visuomotor rotations to visual targets and movements of different amplitude would serve as an appropriate source of contextual information to enable dual adaptation. The results indicated that visual target and movement amplitude is not a suitable source of contextual information to enable dual adaptation in our task. Interference was observed in groups who were exposed to opposing visuomotor rotations, or a visuomotor rotation and no rotation, both when the onset of the visuomotor rotations was sudden, or occurred gradually over the course of training. Furthermore, the pattern of interference indicated that the inability to dual adapt was a result of the generalisation of learning between the two visuomotor mappings associated with each of the visual target and movement amplitudes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigated the role of visual feedback in adapting to novel visuomotor environments. Participants produced isometric elbow torques to move a cursor towards visual targets. Following trials with no rotation, participants adapted to a 60 degrees rotation of the visual feedback before returning to the non-rotated condition. Participants received continuous visual feedback (CF) of cursor position during task execution or post-trial visual feedback (PF). With training, reductions of the angular deviations of the cursor path occurred to a similar extent and at a similar rate for CF and PF groups. However, upon re-exposure to the non-rotated environment only CF participants exhibited post-training aftereffects, manifested as increased angular deviation of the cursor path, with respect to the pre-rotation trials. These aftereffects occurred despite colour cues permitting identification of the change in environment. The results show that concurrent feedback permits automatic recalibration of the visuomotor mapping while post-trial feedback permits performance improvement via a cognitive strategy. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The tendency for contractions of muscles in the upper limb to give rise to increases in the excitability of corticospinal projections to the homologous muscles of the opposite limb is well known. Although the suppression of this tendency is integral to tasks of daily living, its exploitation may prove to be critical in the rehabilitation of acquired hemiplegias. Transcranial direct current (DC) stimulation induces changes in cortical excitability that outlast the period of application. We present evidence that changes in the reactivity of the corticospinal pathway induced by DC stimulation of the motor cortex interact systematically with those brought about by contraction of the muscles of the ipsilateral limb. During the application of flexion torques (up to 50% of maximum) applied at the left wrist, motor evoked potentials (MEPs) were evoked in the quiescent muscles of the right arm by magnetic stimulation of the left motor cortex (M1). The MEPs were obtained prior to and following 10 min of anodal, cathodal or sham DC stimulation of left M1. Cathodal stimulation counteracted increases in the crossed-facilitation of projections to the (right) wrist flexors that otherwise occurred as a result of repeated flexion contractions at the left wrist. In addition, cathodal stimulation markedly decreased the excitability of corticospinal projections to the wrist extensors of the right limb. Thus changes in corticospinal excitability induced by DC stimulation can be shaped (i.e. differentiated by muscle group) by focal contractions of muscles in the limb ipsilateral to the site of stimulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
How the CNS deals with the issue of motor redundancy remains a central question for motor control research. Here we investigate the means by which neuromuscular and biomechanical factors interact to resolve motor redundancy in rhythmic multijoint arm movements. We used a two-df motorised robot arm to manipulate the dynamics of rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow-joint complex. Participants were required to produce rhythmic FE and SP movements, either in isolation, or in combination (at the phase relationship of their choice), while we recorded the activity of key bi-functional muscles. When performed in combination, most participants spontaneously produced an in-phase pattern of coordination in which flexion is synchronised with supination. The activity of the Biceps Brachii (BB), the strongest arm muscle which also has the largest moment arms in both flexion and supination was significantly higher for FE and SP performed in combination than in isolation, suggesting optimal exploitation of the mechanical advantage of this muscle. In a separate condition, participants were required to produce a rhythmic SP movement while a rhythmic FE movement was imposed by the motorised robot. Simulations based upon a musculoskeletal model of the arm demonstrated that in this context, the most efficient use of the force-velocity relationship of BB requires that an anti-phase pattern of coordination (flexion synchronized with pronation) be produced. In practice, the participants maintained the in-phase behavior, and BB activity was higher than for SP performed in isolation. This finding suggests that the neural organisation underlying the exploitation of bifunctional muscle properties, in the natural context, constrains the system to maintain the
Resumo:
An isometric torque-production task was used to investigate interference and retention in adaptation to multiple visuomotor environments. Subjects produced isometric flexion-extension and pronation-supination elbow torques to move a cursor to acquire targets as quickly as possible. Adaptation to a 30 degrees counter-clockwise (CCW) rotation (task A), was followed by a period of rest (control), trials with no rotation (task B0), or trials with a 60 degrees clockwise (CW) rotation (task B60). For all groups, retention of task A was assessed 5 h later. With initial training, all groups reduced the angular deviation of cursor paths early in the movements, indicating feedforward adaptation. For the control group, performance at commencement of the retest was significantly better than that at the beginning of the initial learning. For the B0 group, performance in the retest of task A was not dissimilar to that at the start of the initial learning, while for the B60 group retest performance in task A was markedly worse than initially observed. Our results indicate that close juxtaposition of two visuomotor environments precludes improved retest performance in the initial environment. Data for the B60 group, specifically larger angular errors upon retest compared with initial exposures, are consistent with the presence of anterograde interference. Furthermore, full interference occurred even when the visuomotor environment encountered in the second task was not rotated (B0). This latter novel result differs from those obtained for force field learning, where interference does not occur when task B does not impose perturbing forces, i.e., when B consists of a null field (Brashers-Krug et al., Nature 382:252-255, 1996). The results are consistent with recent proposals suggesting different interference mechanisms for visuomotor (kinematic) compared to force field (dynamic) adaptations, and have implications for the use of washout trials when studying interference between multiple visuomotor environments.
Resumo:
Studies examining dual adaptation to opposing novel environments have yielded contradictory results, with previous evidence supporting both successful dual adaptation and interference leading to poorer adaptive performance. Whether or not interference is observed during dual adaptation appears to be dependent on the method used to allow the performer of the task to distinguish between two novel environments. This experiment tested if colour cues, a separation in workspace, and presentation schedule, could be used to distinguish between two opposing visuomotor rotations and enable dual adaptation. Through the use of a purpose designed manipulandum, each visuomotor rotation was either presented in the same region of workspace and associated with colour cues (Group 1), different regions of workspace in addition to colour cues (Groups 2 and 3) or different regions of workspace only (Groups 4 and 5). We also assessed the effectiveness of the workspace separation with both randomised and alternating presentation schedules (Groups 4 and 5). The results indicated that colour cues were not effective at enabling dual adaptation when each of the visuomotor rotations was associated with the same region of workspace. When associated with different regions of workspace, however, dual adaptation to the opposing rotations was successful regardless of whether colour cues were present or the type of presentation schedule.
Resumo:
One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.
Resumo:
The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.
Resumo:
In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.
Resumo:
The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination-pronation (SP) at the elbow-joint complex. Participants (N = 10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. That result provides evidence that the predominance of the in-phase pattern originates in the influence of neuro-muscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.
Resumo:
In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion - supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.
Resumo:
In this experiment, we examined the extent to which the spatiotemporal reorganization of muscle synergies mediates skill acquisition on a two degree-of-freedom (df) target-acquisition task. Eight participants completed five practice sessions on consecutive days. During each session they practiced movements to eight target positions presented by a visual display. The movements required combinations of flexion/extension and pronation/supination of the elbow joint complex. During practice sessions, eight targets displaced 5.4 cm from the start position ( representing joint excursions of 54) were presented 16 times. During pre- and posttests, participants acquired the targets at two distances (3.6 cm [36 degrees] and 7.2 cm [72 degrees]). EMG data were recorded from eight muscles contributing to the movements during the pre- and posttests. Most targets were acquired more rapidly after the practice period. Performance improvements were, in most target directions, accompanied by increases in the smoothness of the movement trajectories. When target acquisition required movement in both dfs, there were also practice-related decreases in the extent to which the trajectories deviated from a direct path to the target. The contribution of monofunctional muscles ( those producing torque in a single df) increased with practice during movements in which they acted as agonists. The activity in bifunctional muscles ( those contributing torque in both dfs) remained at pretest levels in most movements. The results suggest that performance gains were mediated primarily by changes in the spatial organization of muscles synergies. These changes were expressed most prominently in terms of the magnitude of activation of the monofunctional muscles.
Resumo:
In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.
Resumo:
Adults are proficient at reaching to grasp objects of interest in a cluttered workspace. The issue of concern, obstacle avoidance, was studied in 3 groups of young children aged 11-12, 9-10, and 7-8 years (n = 6 in each) and in 6 adults aged 18-24 years. Adults slowed their movements and decreased their maximum grip aperture when an obstacle was positioned close to a target object (the effect declined as the distance between target and obstacle increased). The children showed the same pattern, but the magnitude of the effect was quite different. In contrast to the adults, the obstacle continued to have a large effect when it was some distance from the target (and provided no physical obstruction to movement).