368 resultados para Systematics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been considerable uncertainty about the nature of Pleistocene environments colonised by the first modern humans in Island SE Asia, and about the vegetation of the Last Glacial Maximum (LGM) in the region. Here, the palynology from a series of exposures in the Great Cave of Niah, Sarawak, Malaysian Borneo, spanning a period from ca. 52,000 to 5000 BP is described. Vegetation during this period was climate-driven and often highly unstable. Interstadials are marked by lowland forest, sometimes rather dry and at times by mangroves. Stadials are indicated by taxa characteristic of open environments or, as at the LGM, by highly disturbed rather open forest. Stadials are also characterised by taxa now restricted to 1000-1600 m above sea level, suggesting temperature declines of ca 7-9 C relative to present, by comparison with modern lapse rates. The practice of biomass burning appears associated with the earliest human activity in the cave.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The site Pilgrimstad in central Sweden has often been cited as a key locality for discussions of ice-free/ice-covered intervals during the Early and Middle Weichselian. Multi-proxy investigations of a recently excavated section at Pilgrimstad now provide a revised picture of the climatic and environmental development between similar to 80 and 36 ka ago. The combination of sedimentology, geochemistry, OSL and 14C dating, and macrofossil, siliceous microfossil and chironomid analyses shows: (i) a lower succession of glaciofluvial/fluvial, lacustrine and glaciolacustrine sediments; (ii) an upper lacustrine sediment sequence; and (iii) Last Glacial Maximum till cover. Microfossils in the upper lacustrine sediments are initially characteristic for oligo- to mesotrophic lakes, and macrofossils indicate arctic/sub-arctic environments and mean July temperatures > 8 degrees C. These conditions were, however, followed by a return to a low-nutrient lake and a cold and dry climate. The sequence contains several hiatuses, as shown by the often sharp contacts between individual units, which suggests that ice-free intervals alternated with possible ice advances during certain parts of the Early and Middle Weichselian.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural deposits of sunken wood provide an important habitat for deep-sea invertebrates. Deep-sea chitons in the primitive order Lepidopleurida are typically collected rarely and as single specimens. However, these animals have been recovered in large densities associated with sunken wood in the tropical West Pacific, in groups of up to 50 individuals. Four deep- sea expeditions in the West Pacific, to the Philippines, Solomon Islands, and Vanuatu, recovered a large number of poly- placophorans. We have examined the morphology as well as the range and distribution of these species, based on the larg- est collection ever examined (more than 1300 individuals). These species show potentially adapted characters associated with exploitation of sunken wood as habitat, such as protruding caps on sensory shell pores (aesthetes) and large interseg- mental bristles with potential sensory function. In this study we investigated the twenty-two species recovered, including seven newly described here (Leptochiton consimilis n. sp., L. angustidens n. sp., L. dykei n. sp., L. samadiae n. sp., L. longisetosus n. sp., L. clarki n. sp., L. schwabei n. sp.), and provide the first identification key to the 34 lepidopleuran chitons known from sunken wood worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The palaeoloricate ‘polyplacophorans’ are an extinct paraphyletic group of basal chiton-like organisms known primarily from their fossilized valves. Their phylo- genetic placement remains contentious, but they are likely to include both stem-group Polyplacophora and stem- group Aplacophora. Candidates for the latter position include ‘Helminthochiton’ thraivensis from the Ordovician of Scotland, which we redescribe here through a combined optical and micro-CT (XMT) restudy of the type material. The 11 specimens in the type series are all articulated, presenting partial or complete valve series as well as moul- dic preservation of the girdle armature; they demonstrate a vermiform body plan. The valves are typically palaeolori- cate in aspect, but differ in detail from all existing palaeol- oricate genera; we hence erect Phthipodochiton gen. nov. to contain the species. The most notable feature of the fossils is the spicular girdle; this is impersistently preserved, but demonstrably wraps entirely around the ventral surface of the animal, implying that a ‘true’ (i.e. polyplacophoran like) foot was absent, although we do not exclude the pos- sibility of a narrow solenogastre-like median pedal groove having been present. Phthipodochiton thraivensis presents an apparent mosaic of aplacophoran and polyplacophoran features and as such will inform our understanding of the relationship between these groups of extant molluscs. An inference may also be drawn that at least some other pal- aeoloricates possessed an ‘armoured aplacophoran’ body plan, in contrast to the ‘limpet-like’ body plan of extant Polyplacophora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological coherence is a multifaceted conservation objective that includes some potentially conflicting concepts. These concepts include the extent to which the network maximises diversity (including genetic diversity) and the extent to which protected areas interact with non-reserve locations. To examine the consequences of different selection criteria, the preferred location to complement protected sites was examined using samples taken from four locations around each of two marine protected areas: Strangford Lough and Lough Hyne, Ireland. Three different measures of genetic distance were used: FST, Dest and a measure of allelic dissimilarity, along with a direct assessment of the total number of alleles in different candidate networks. Standardized site scores were used for comparisons across methods and selection criteria. The average score for Castlehaven, a site relatively close to Lough Hyne, was highest, implying that this site would capture the most genetic diversity while ensuring highest degree of interaction between protected and unprotected sites. Patterns around Strangford Lough were more ambiguous, potentially reflecting the weaker genetic structure around this protected area in comparison to Lough Hyne. Similar patterns were found across species with different dispersal capacities, indicating that methods based on genetic distance could be used to help maximise ecological coherence in reserve networks. ⺠Ecological coherence is a key component of marine protected area network design. ⺠Coherence contains a number of competing concepts. ⺠Genetic information from field populations can help guide assessments of coherence. ⺠Average choice across different concepts of coherence was consistent among species. ⺠Measures can be combined to compare the coherence of different network designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levels of genetic relatedness within bat colonies are often unknown, and consequently the reasons for group formation and social organization are unclear. The Leisler's bat (Nyctalus leisleri), like most temperate bat species, forms nursery colonies in summer. We used microsatellite markers to examine identity and to attempt to estimate relatedness among females within a nursery colony, over 2 consecutive years, to ascertain whether females show kinship and natal philopatry, testing the hypothesis that this is the basis of colony formation. Parentage and relatedness of young born within a colony was assessed to investigate mating patterns via male reproductive skew and whether males achieve mating success within their natal colony. While there was evidence for female philopatry, levels of genetic relatedness within colonies were low. This suggests that kinship is not a major determinant in group formation, as roosts also comprise a large number of distant relatives or non-kin. Roost switching and gene flow are likely to be high. Both sexes reproduced in their first year, whereas males appear to be the more dispersive sex. We argue that the physical environment as well as information sharing provided by communal roosting are likely to be important factors for the formation of these large natal colonies in N. leisleri and possibly other lineages of bats. © 2012 The Author.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores from slopes east of the Great Barrier Reef (GBR) challenge traditional models for sedimentation on tropical mixed siliciclastic-carbonate margins. However, satisfactory explanations of sediment accumulation on this archetypal margin that include both hemipelagic and turbidite sedimentation remain elusive, as submarine canyons and their role in delivering coarse-grained turbidite deposits, are poorly understood. Towards addressing this problem we investigated the shelf and canyon system bordering the northern Ribbon Reefs and reconstructed the history of turbidite deposition since the Late Pleistocene. High-resolution bathymetric and seismic data show a large paleo-channel system that crosses the shelf before connecting with the canyons via the inter-reef passages between the Ribbon Reefs. High-resolution bathymetry of the canyon axis reveals a complex and active system of channels, sand waves, and local submarine landslides. Multi-proxy examination of three cores from down the axis of the canyon system reveals 18 turbidites and debrites, interlayered with hemipelagic muds, that are derived from a mix of shallow and deep sources. Twenty radiocarbon ages indicate that siliciclastic-dominated and mixed turbidites only occur prior to 31 ka during Marine Isotope Stage (MIS) 3, while carbonate-dominated turbidites are well established by 11 ka in MIS1 until as recently as 1.2 ka. The apparent lack of siliciclastic-dominated turbidites and presence of only a few carbonate-dominated turbidites during the MIS2 lowstand are not consistent with generic models of margin sedimentation but might also reflect a gap in the turbidite record. These data suggest that turbidite sedimentation in the Ribbon Reef canyons, probably reflects the complex relationship between the prolonged period (> 25 ka) of MIS3 millennial sea level changes and local factors such as the shelf, inter-reef passage depth, canyon morphology and different sediment sources. On this basis we predict that the spatial and temporal patterns of turbidite sedimentation could vary considerably along the length of the GBR margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proxy records derived from ombrotrophic peatlands provide important insights into climate change over decadal to millennial timescales. We present mid- to late- Holocene humification data and testate amoebae-derived water table records from two peatlands in Northern Ireland. We examine the repli- cation of periodicities in these proxy climate records, which have been precisely linked through teph- rochronology. Age-depth models are constructed using a Bayesian piece-wise linear accumulation model and chronological errors are calculated for each profile. A Lomb-Scargle Fourier transform-based spectral analysis is used to test for statistically significant periodicities in the data. Periodicities of c. 130, 180, 260, 540 and 1160 years are present in at least one proxy record at each site. The replication of these peri- odicities provides persuasive evidence that they are a product of allogenic climate controls, rather than internal peatland dynamics. A technique to estimate the possible level of red-noise in the data is applied and demonstrates that the observed periodicities cannot be explained by a first-order autoregressive model. We review the periodicities in the light of those reported previously from other marine and terrestrial climate proxy archives to consider climate forcing parameters. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Empirical support for ‘invasional meltdown’, where the presence of one invading species facilitates another and compounds negative impacts on indigenous species, is equivocal with few convincing studies. In Ireland, the bank vole was introduced 80 years ago and now occupies a third of the island. The greater white-toothed shrew arrived more recently within the invasive range of the bank vole. We surveyed the abundance of both invasive species and two indigenous species, the wood mouse and pygmy shrew, throughout their respective ranges. The negative effects of invasive on indigenous species were strong and cumulative bringing about species replacement. The greater white-toothed shrew, the second invader, had a positive and synergistic effect on the abundance of the bank vole, the first invader, but a negative and compounding effect on the abundance of the wood mouse and occurrence of the pygmy shrew. The gradual replacement of the wood mouse by the bank vole decreased with distance from the point of the bank vole’s introduction whilst no pygmy shrews were captured where both invasive species were present. Such interactions may not be unique to invasions but characteristic of all multispecies communities. Small mammals are central in terrestrial food webs and compositional changes to this community in Ireland are likely to reverberate throughout the ecosystem. Vegetation composition and structure, invertebrate communities and the productivity of avian and mammalian predators are likely to be affected. Control of these invasive species may only be effected through landscape and habitat management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive species pose a major threat to biodiversity but provide an opportunity to describe the processes that lead to changes in a species’ range. The bank vole (Myodes glareolus) is an invasive rodent that was introduced to Ireland in the early twentieth century. Given its continuing range expansion, the substantial empirical data on its spread thus far, and the absence of any eradication program, the bank vole in Ireland represents a unique model system for studying the mechanisms influencing the rate of range expansion in invasive small mammals. We described the invasion using a reaction–diffusion model informed by empirical data on life history traits and demographic parameters. We subsequently modelled the processes involved in its range expansion using a rule-based spatially explicit simulation. Habitat suitability interacted with density-dependent parameters to influence dispersal, most notably the density at which local populations started to donate emigrating individuals, the number of dispersing individuals and the direction of dispersal. Whilst local habitat variability influenced the rate of spread, on a larger scale the invasion resembled a simple reaction–diffusion process. Our results suggest a Type 1 range expansion where the rate of expansion is generally constant over time, but with some evidence for a lag period following introduction. We demonstrate that a two-parameter empirical model and a rule-based spatially explicit simulation are sufficient to accurately describe the invasion history of a species that exhibits a complex, density-dependent pattern of dispersal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics. In response, marine reserves can be used to protect exploited species and conserve biodiversity. The increased abundance of predatory species in marine reserves may cause indirect effects along chains of multi-trophic interactions. These trophic cascades can arise through direct predation, density-mediated indirect interactions (DMIIs), or indirect behavioural effects, termed trait-mediated indirect interactions (TMIIs). The extent of algal cover and the abundance of 4 primary consumers were determined in Lough Hyne, which was designated Europe's first marine nature reserve in 1981. The primary consumers were the sea urchin Paracentrotus lividus, the topshell Gibbula cineraria, the oyster Anomia ephippium, and the scallop Chlamys varia. The abundances of 3 starfish species (Marthasterias glacialis, Asterias rubens, and Asterina gibbosa) were also determined, as were 2 potential crustacean predators, Necora puber and Carcinus maenas. These data were compared with historical data from a 1962 (prey) and a 1963 (predator) survey to determine the nature of community interactions over adjacent trophic levels. The present study reveals a breakdown in population structure of the 4 surveyed prey species. Marine reserve designation has led to an increase in predatory crabs and M. glacialis, a subsequent decrease in primary consumers, especially the herbivore P. lividus, and an increase in macroalgal cover which is indicative of a trophic cascade. The study shows that establishing a Marine Reserve does not guarantee that conservation benefits will be distributed equally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and predicting the dynamics of multispecies systems generally require estimates of interaction strength among species. Measuring interaction strength is difficult because of the large number of interactions in any natural system, long-term feedback, multiple pathways of effects between species pairs, and possible nonlinearities in interaction-strength functions. Presently, the few studies that extensively estimate interaction strength suggest that distributions of interaction strength tend to be skewed toward few strong and many weak interactions. Modeling studies indicate that such skewed patterns tend to promote system stability and arise during assembly of persistent communities. Methods for estimating interaction strength efficiently from traits of organisms, such as allometric relationships, show some promise. Methods for estimating community response to environmental perturbations without an estimate of interaction strength may also be of use. Spatial and temporal scale may affect patterns of interaction strength, but these effects require further investigation and new multispecies modeling frameworks. Future progress will be aided by development of long-term multispecies time series of natural communities, by experimental tests of different methods for estimating interaction strength, and by increased understanding of nonlinear functional forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Body size determines a host of species traits that can affect the structure and dynamics of food webs, and other ecological networks, across multiple scales of organization. Measuring body size provides a relatively simple means of encapsulating and condensing a large amount of the biological information embedded within an ecological network. Recently, important advances have been made by incorporating body size into theoretical models that explore food web stability, the patterning of energy fluxes, and responses to perturbations. Because metabolic constraints underpin bodysize scaling relationships, metabolic theory offers a potentially useful new framework within which to develop novel models to describe the structure and functioning of ecological networks and to assess the probable consequences of biodiversity change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fishing alters community size structure by selectively removing larger individual fish and by changing the relative abundance of different-sized species. To assess the relative importance of individual-and species-level effects, two indices of fish community structure were compared, the relative abundance of large fish individuals (large fish indicator, LFI) and the relative abundance of large fish species (large species indicator, LSI). The two indices were strongly correlated for empirical data from the Celtic Sea and for data from simulated model communities, suggesting that much of the variability in the LFI is caused by shifts in the relative abundance of species (LSI). This correlation is explained by the observation that most of the biomass of a given species is spread over few length classes, a range spanning the factor 2 of individual length, such that most species contributed predominantly to either the small or the large component of the LFI. The results suggest that the effects of size-selective fishing in the Celtic Sea are mediated mainly through changes in community composition.