259 resultados para STARS: EMISSION-LINE, BE
Resumo:
The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography an indirect imaging technique that can be used to map the Roche-lobe-filling secondary star. The review begins with a description of the basic principles that underpin Roche tomography including methods for determining the binary system parameters. Noise propagation onto Roche tomograms is also covered. Finally the review concludes with a look at the main scientific highlights to date and the future prospects for Roche tomography
Resumo:
We cross match the GALEX and Kepler surveys to create a unique dataset with both ultraviolet (UV) measurements and highly precise photometric variability measurements in the visible light spectrum. As stellar activity is driven by magnetic field modulations, we have used UV emission from the magnetically heated gas in the stellar atmosphere to serve as our proxy for the more well-known stellar activity indicator, R' HK . The R' HK approximations were in turn used to estimate the level of astrophysical noise expected in radial velocity (RV) measurements and these were then searched for correlations with photometric variability. We find significant scatter in our attempts to estimate RV noise for magnetically active stars, which we attribute to variations in the phase and strength of the stellar magnetic cycle that drives the activity of these targets. However, for stars we deem to be magnetically quiet, we do find a clear correlation between photometric variability and estimated levels of RV noise (with variability up to ~10 m s–1). We conclude that for these quiet stars, we can use photometric measurements as a proxy to estimate the RV noise expected. As a result, the procedure outlined in this paper may help select targets best-suited for RV follow-up necessary for planet confirmation.
Resumo:
In this article I consider the debate over whether line 1520b ought to be read as the emended “hond sweng” or the scribal “hord swenge.” It is a small point philologically but it raises interesting cultural and literary questions about the attitude of the Beowulf poet to arms and armour, to aggressive and defensive war gear, and to swords in particular. It has widely been assumed that swords are important in Beowulf and yet, the question of what their significance might be has received very little attention. Throughout the poem the hero is plagued by breaking, melting, and failing swords. He borrows, finds, and is given swords but unlike other English and Germanic heroes he is never identified with a single, great sword. I suggest that this is because, ultimately, Beowulf is conceived as a hondbana, a designation which has implications for what kind of a hero he proves to be.
Resumo:
The factor-dependent cell line, TF-1, established from a patient with erythroleukaemia, shows characteristics of immature erythroblasts. Addition of granulocyte-macrophage colony stimulating factor (GM-CSF) to the culture medium is required for long-term growth of the cells. Erythropoietin (Epo) can also be used to sustain TF-1 cells but for only limited periods (approximately a week). Low levels of both growth factors can act synergistically to maintain proliferation for a longer period of time than Epo alone. To eliminate the requirement of exogenous Epo for growth, TF-1 cells were co-cultured with a retroviral secreting cell line containing the human erythropoietin (hEpo) gene and a neomycin (neo) selectable marker. TF-1 cells which exhibited neo resistance (indicating infection by the retrovirus) were then grown in low concentrations of GM-CSF without the addition of Epo. Under these conditions growth of normal TF-1 cells was not sustained. The neo-resistant cells survived for more than 14 days indicating synergy between GM-CSF and the Epo synthesised by the co-cultured TF-1 cells. Radioimmunoassays performed on growth media detected concentrations up to 1 mU/ml of Epo, implying that stable integration of the retroviral vector and expression of the hEpo gene have been achieved.
Resumo:
Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~ 40% and ~ 50%, respectively. Similarly, stars with M > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ~ 25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~ 2 and the wind luminosity by a factor ~ 9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for.
Resumo:
BACKGROUND: PET/CT scanning can determine suitability for curative therapy and inform decision making when considering radical therapy in patients with non-small cell lung cancer (NSCLC). Metastases to central mediastinal lymph nodes (N2) may alter such management decisions. We report a 2 year retrospective series assessing N2 lymph node staging accuracy with PET/CT compared to pathological analysis at surgery.
METHODS: Patients with NSCLC attending our centre (excluding those who had induction chemotherapy) who had staging PET/CT scans and pathological nodal sampling between June 2006 and June 2008 were analysed. For each lymph node assessed pathologically, the corresponding PET/CT status was determined. 64 patients with 200 N2 lymph nodes were analysed.
RESULTS: Sensitivity of PET/CT scans for indentifying involved N2 lymph nodes was
39%, specificity 96% and overall accuracy 90%. For individual lymph node analysis, logistic regression demonstrated a significant linear association between PET/CT sensitivity and time from scanning to surgery (p=0.031) but not for specificity and accuracy. Those scanned <9 weeks before pathological sampling were significantly more sensitive (64% >9 weeks, 0% ≥ 9 weeks, p=0.013) and more accurate (94% <9 weeks, 81% ≥ 9 weeks, p=0.007). Differences in specificity were not seen (97% <9 weeks, 91% ≥ 9 weeks, p=0.228). No significant difference in specificity was found at any time point.
CONCLUSIONS: We recommend that if a PET/CT scan is older than 9 weeks, and management would be altered by the presence of N2 nodes, re-staging of the
mediastinum should be undertaken.
Resumo:
Background: Advanced colorectal cancer is treated with a combination of cytotoxic drugs and targeted treatments. However, how best to minimise the time spent taking cytotoxic drugs and whether molecular selection can refine this further is unknown. The primary aim of this study was to establish how cetuximab might be safely and effectively added to intermittent chemotherapy.
Methods: COIN-B was an open-label, multicentre, randomised, exploratory phase 2 trial done at 30 hospitals in the UK and one in Cyprus. We enrolled patients with advanced colorectal cancer who had received no previous chemotherapy for metastases. Randomisation was done centrally (by telephone) by the Medical Research Council Clinical Trials Unit using minimisation with a random element. Treatment allocation was not masked. Patients were assigned (1:1) to intermittent chemotherapy plus intermittent cetuximab or to intermittent chemotherapy plus continuous cetuximab. Chemotherapy was FOLFOX (folinic acid and oxaliplatin followed by bolus and infused fluorouracil). Patients in both groups received FOLFOX and weekly cetuximab for 12 weeks, then either had a planned interruption (those taking intermittent cetuximab) or planned maintenance by continuing on weekly cetuximab (continuous cetuximab). On RECIST progression, FOLFOX plus cetuximab or FOLFOX was recommenced for 12 weeks followed by further interruption or maintenance cetuximab, respectively. The primary outcome was failure-free survival at 10 months. The primary analysis population consisted of patients who completed 12 weeks of treatment without progression, death, or leaving the trial. We tested BRAF and NRAS status retrospectively. The trial was registered, ISRCTN38375681.
Findings: We registered 401 patients, 226 of whom were enrolled. Results for 169 with KRAS wild-type are reported here, 78 (46%) assigned to intermittent cetuximab and 91 (54%) to continuous cetuximab. 64 patients assigned to intermittent cetuximab and 66 of those assigned to continuous cetuximab were included in the primary analysis. 10-month failure-free survival was 50% (lower bound of 95% CI 39) in the intermittent group versus 52% (lower bound of 95% CI 41) in the continuous group; median failure-free survival was 12·2 months (95% CI 8·8–15·6) and 14·3 months (10·7–20·4), respectively. The most common grade 3–4 adverse events were skin rash (21 [27%] of 77 patients vs 20 [22%] of 92 patients), neutropenia (22 [29%] vs 30 [33%]), diarrhoea (14 [18%] vs 23 [25%]), and lethargy (20 [26%] vs 19 [21%]).
Interpretation: Cetuximab was safely incorporated in two first-line intermittent chemotherapy strategies. Maintenance of biological monotherapy, with less cytotoxic chemotherapy within the first 6 months, in molecularly selected patients is promising and should be validated in phase 3 trials.
Resumo:
We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log Te (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s 23p 2, 3s3p 3, 3s 23p3d, 3s 23p4s, 3s 23p4p, and 3s 23p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.
Resumo:
Financial and cultural aspects of corporate giving by UK and non-UK companies in response to the December 2004 South Asia Tsunami disaster are explored in this article. Literatures on corporate giving rationales, concepts of disaster and donor activity in disasters provide an underpinning. The article seeks to make connections between this high profile if short-lived business giving and the funding of the arts that is sought from business; and to draw tentative lessons for arts funding when seeking business support. The giving accounts in the wake of the Tsunami from a non-probability sample of 56 UK companies and 16 non-UK companies were examined. Reported online to the UK charity Business in the Community, these accounts were accessed in February 2005 and scrutinized thematically. Concurrently, company financial profiles to accompany giving figures were constructed. Although linkages between donation levels and financial performance were lacking, emerging themes included the role of employees, influencing company giving and creating a climate of expectation of firms' contributions. These developments may have important implications for business funding for the arts, where leading philanthropists are prominent as individuals in the giving landscapes; but employees' collective involvement is not marked. Alternatively, cultivation of employees as would-be donors, indirectly via their firms, may be a more secure, if lower level route to funding for some arts organizations than dependence on high profile business leaders. The article considers alternative scenarios for company giving in disaster contexts, including as a sustained and lasting giving theme or as company support as a ‘one-off’ event, rock-star style. The likely development of employee power as a key element in company giving is explored; and its wider meanings for funding in arts settings, (where the giver as rock star heroine/hero is also prominent) are considered.
Resumo:
Context. Protoplanetary disks are vital objects in star and planet formation, possessing all the material, gas and dust, which may form a planetary system orbiting the new star. Small, simple molecules have traditionally been detected in protoplanetary disks; however, in the ALMA era, we expect the molecular inventory of protoplanetary disks to significantly increase.
Aims. We investigate the synthesis of complex organic molecules (COMs) in protoplanetary disks to put constraints on the achievable chemical complexity and to predict species and transitions which may be observable with ALMA.
Methods. We have coupled a 2D steady-state physical model of a protoplanetary disk around a typical T Tauri star with a large gas-grain chemical network including COMs. We compare the resulting column densities with those derived from observations and perform ray-tracing calculations to predict line spectra. We compare the synthesised line intensities with current observations and determine those COMs which may be observable in nearby objects. We also compare the predicted grain-surface abundances with those derived from cometary comae observations.
Results. We find COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances similar to 10(-6)-10(-4) that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, similar to 10(-12)-10(-7). Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards T Tauri star-disk systems. There is poor agreement with HC3(N) lines observed towards LkCa 15 and GO Tau and we discuss possible explanations for these discrepancies. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging, even with ALMA "Full Science" capabilities. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Sun's natal disk.
Resumo:
Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.
Resumo:
We accurately determine the fundamental system parameters of the neutron star X-ray transient Cen X-4 solely using phase-resolved high-resolution UV-Visual Echelle Spectrograph spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened, phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disc. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755 ± 0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32^{+8}_{-2} degrees. Combining these values with the results of the radial-velocity study gives a neutron star mass of 1.94^{+0.37}_{-0.85}M⊙ consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly rotating isolated stars, is present on the Northern hemisphere of the K7 secondary star and we estimate that ~4 percent of the total surface area of the donor star is covered with spots.This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
Resumo:
We present the results of a line identification analysis using data from the IRAM Plateau de Bure Inferferometer, focusing on six massive star-forming hot cores: G31.41+0.31, G29.96-0.02, G19.61-0.23, G10.62-0.38, G24.78+0.08A1 and G24.78+0.08A2. We identify several transitions of vibrationally excited methyl formate (HCOOCH$_3$) for the first time in these objects as well as transitions of other complex molecules, including ethyl cyanide (C$_2$H$_5$CN), and isocyanic acid (HNCO). We also postulate a detection of one transition of glycolaldehyde (CH$_2$(OH)CHO) in two new hot cores. We find G29.96-0.02, G19.61-0.23, G24.78+0.08A1 and 24.78+0.08A2 to be chemically very similar. G31.41+0.31, however, is chemically different: it manifests a larger chemical inventory and has significantly larger column densities. We suggest that it may represent a different evolutionary stage to the other hot cores in the sample, or it may surround a star with a higher mass. We derive column densities for methyl formate in G31.41+0.31, using the rotation diagram method, of $\times$10$^{17}$ cm$^{-2}$ and a T$_{rot}$ of $\sim$170 K. For G29.96-0.02, G24.78+0.08A1 and G24.78+0.08A2, glycolaldehyde, methyl formate and methyl cyanide all seem to trace the same material and peak at roughly the same position towards the dust emission peak. For G31.41+0.31, however, glycolaldehyde shows a different distribution to methyl formate and methyl cyanide and seems to trace the densest, most compact inner part of hot cores.
Resumo:
The polarization dependence of laser-driven coherent synchrotron emission transmitted through thin foils is investigated experimentally. The harmonic generation process is seen to be almost completely suppressed for circular polarization opening up the possibility of producing isolated attosecond pulses via polarization gating. Particle-in-cell simulations suggest that current laser pulses are capable of generating isolated attosecond pulses with high pulse energies.
Resumo:
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.