246 resultados para ENZYME SECRETION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: In view of the increased rates of pre-eclampsia observed in diabetic pregnancy and the lack of ex vivo data on placental biomarkers of oxidative stress in T1 diabetic pregnancy, the aim of the current investigation was to examine placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes. A further objective of the study was to investigate the putative impact of vitamin C and E supplementation on antioxidant enzyme activity and lipid peroxidation in type 1 diabetic placentae.

METHODS: The current study measured levels of antioxidant enzyme [glutathione peroxidase (Gpx), glutathione reductase (Gred), superoxide dismutase (SOD) and catalase] activity and degree of lipid peroxidation (aqueous phase hydroperoxides and 8-iso-prostaglandin F2α) in matched central and peripheral samples from placentae of DAPIT (n=57) participants. Levels of vitamin C and E were assessed in placentae and cord blood.

RESULTS: Peripheral placentae demonstrated significant increases in Gpx and Gred activities in pre-eclamptic in comparison to non-pre-eclamptic women. Vitamin C and E supplementation had no significant effect on cord blood or placental levels of these vitamins, nor on placental antioxidant enzyme activity or degree of lipid peroxidation in comparison to placebo-supplementation.

CONCLUSION: The finding that maternal supplementation with vitamin C/E does not augment cord or placental levels of these vitamins is likely to explain the lack of effect of such supplementation on placental indices including antioxidant enzymes or markers of lipid peroxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantioenriched and enantiopure thiosulfinates were obtained by asymmetric sulfoxidation of cyclic 1,2-disulfides, using chemical and enzymatic (peroxidase, monooxygenase, dioxygenase) oxidation methods and chiral stationary phase HPLC resolution of racemic thiosulfinates. Enantiomeric excess values, absolute configurations and configurational stabilities of chiral thiosulfinates were determined. Methyl phenyl sulfoxide, benzo[c]thiophene cis-4,5-dihydrodiol and 1,3-dihydrobenzo[c]thiophene derivatives were among unexpected types of metabolites isolated, when acyclic and cyclic 1,2-disulfide were used as substrates for Pseudomonas putida strains. Possible biosynthetic pathways are presented for the production of metabolites from 1,4-dihydrobenzo-2,3-dithiane, including a novel cis-dihydrodiol metabolite that was also derived from benzo[c]thiophene and 1,3-dihydrobenzo[c]thiophene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in STC-1 pGIP/neo cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Neuropeptides contribute to the pathophysiology of peripheral inflammation and a neurogenic component has been described for many inflammatory diseases, including periodontitis. Neuropeptides are susceptible to cleavage by peptidases and therefore the exact location and level of expression of peptidases are major determinants of neuropeptide action. Previous studies by our research group suggested that levels of the neuropeptide calcitonin gene-related peptide (CGRP) may be regulated by peptidases present in gingival crevicular fluid (GCF). Objectives: The aim of this work was to purify and partially characterize the GCF enzyme responsible for CGRP degradation using a biotinylated hydroxymate affinity probe (based on the P1-P4 amino acid sequence of the observed cleavage site) which we previously showed to inhibit CGRP degradation. Methods: Pooled healthy and pooled periodontitis GCF samples were subject to a pre-clear step with magnetic streptavadin beads. Healthy and diseased samples were incubated with the biotinylated hydroxymate probe (20 uM) after which biotinylated proteins were purified from the sample using magnetic streptavadin beads. Bound proteins were subjected to SDS-PAGE and western blotting. Biotin incorporated proteins were disclosed using a streptavadin horse radish peroxidase conjugate. Results: A band was disclosed in the periodontitis pooled sample at a molecular weight of approximately 60 kDa. The band was absent in the pooled healthy samples. As expected, when periodontitis samples were pre-boiled to denature proteins before the addition of the hydroxymate probe, no biotin incorporated band was present. Conclusions: This work demonstrates the purification and disclosure of a protein found specifically in periodontitis which binds to the specific biotinylated hydroxymate affinity probe based on the cleavage site of CGRP only when in its native form. We intend to scale up the sample size thus allowing the identification of the putative CGRP degrading peptidase using MALDI-mass spectrometry.
Funded by an IADR/GlaxoSmithKline Innovation in Oral Care Award

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel peptide was isolated from the skin secretion of Chinese large odorous frog, Odorrana livida, and was named as Rana-BI. The cDNA sequencing was obtained by 'shotgun' cloning. The amino acid sequence of the mature peptide was identified as Gly-Leu-Leu-Ser-Gly-Lys-Ser-Val-Lys-Gly-Ser-Ile-OH by automated Edman degradation, and the molecular weight of the peptide was confirmed to be 1144.68 Da by MALDI-TOF and liquid chromatography/MS. Subsequently, the bioactivity of synthetic peptide was evaluated by smooth muscle assay using isolated rat bladder preparation. It was demonstrated that Rana-BI inhibited the contraction of rat bladder induced by bradykinin. Comparing with other peptides by searching from database, the primary structure of Rana-BI showed high similarity with that of an antimicrobial peptide of Rana family (12/12 residues). These data revealed a novel biological function of this peptide

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dermaseptin antimicrobial peptide family contains members of 27–34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5′-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested.