377 resultados para 07 Agricultural and Veterinary Sciences
Resumo:
PURPOSE: There is now no doubt that bystander signalling from irradiated cells occurs and causes a variety of responses in cells not targeted by the ionizing track. However, the mechanisms underlying these processes are unknown and the relevance to radiotherapy and risk assessment remains controversial. Previous research by our laboratory has shown bystander effects in a human keratinocyte cell line, HPV-G cells, exposed to medium from gamma irradiated HPV-G cells. The aim of this work was to investigate if similar mechanisms to those identified in medium transfer experiments occurred in these HPV-G cells when they are in the vicinity of microbeam irradiated cells. Demonstration of a commonality of mechanisms would support the idea that the process is not artifactual. MATERIALS AND METHODS: HPV-G cells were plated as two separate populations on mylar dishes. One population was directly irradiated using a charged particle microbeam (1 - 10 protons). The other population was not irradiated. Bystander factor-induced apoptosis was investigated in both populations following treatment by monitoring the levels of reactive oxygen species and mitochondrial membrane potential using fluorescent probes. Expression of the anti-apoptotic protein, bcl-2, and cytochrome c were determined, as well as apoptosis levels. RESULTS: Microbeam irradiation induced increases in reactive oxygen species and decreases in mitochondrial membrane potential at 6 h post-exposure, increased expression of bcl-2 and cytochrome c release at 6.5 h and increased apoptosis at 24 h. CONCLUSION: This study shows that similar bystander signalling pathways leading to apoptosis are induced following microbeam irradiation and following medium transfer. This demonstrates that the mechanisms involved are common across different radiation qualities and conditions and indicates that they may be relevant in vivo.
Resumo:
PURPOSE: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application. EXPERIMENTAL DESIGN: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using "mismatch" following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition. RESULTS: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect. CONCLUSION: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefi
Resumo:
Par proteins are involved in determining cellular asymmetry. Recent studies have identified one of these proteins, Par6, as a key regulator of cell polarity and transformation via its interactions with small GTPases and atypical forms of protein kinase C.
Resumo:
Background
When we move along in time with a piece of music, we synchronise the downward phase of our gesture with the beat. While it is easy to demonstrate this tendency, there is considerable debate as to its neural origins. It may have a structural basis, whereby the gravitational field acts as an orientation reference that biases the formulation of motor commands. Alternatively, it may be functional, and related to the economy with which motion assisted by gravity can be generated by the motor system.
Methodology/Principal Findings
We used a robotic system to generate a mathematical model of the gravitational forces acting upon the hand, and then to reverse the effect of gravity, and invert the weight of the limb. In these circumstances, patterns of coordination in which the upward phase of rhythmic hand movements coincided with the beat of a metronome were more stable than those in which downward movements were made on the beat. When a normal gravitational force was present, movements made down-on-the-beat were more stable than those made up-on-the-beat.
Conclusions/Significance
The ubiquitous tendency to make a downward movement on a musical beat arises not from the perception of gravity, but as a result of the economy of action that derives from its exploitation.
Resumo:
In photodynamic antimicrobial chemotherapy (PACT), a combination of a sensitising drug and visible light causes selective destruction of microbial cells. The ability of light-drug combinations to kilt microorganisms has been known for over 100 years. However, it is only recently with the beginning of the search for alternative treatments for antibiotic-resistant pathogens that the phenomenon has been investigated in detail. Numerous studies have shown PACT to be highly effective in the in vitro destruction of viruses and protozoa, as well as Gram-positive and Gram-negative bacteria and fungi. Results of experimental investigations have demonstrated conclusively that both dermatomycetes and yeasts can be effectively killed by photodynamic action employing phenothiazinium, porphyrin and phthatocyanine photosensitisers. Importantly, considerable setectivity for fungi over human cells has been demonstrated, no reports of fungal resistance exist and the treatment is not associated with genotoxic or mutagenic effects to fungi or human cells. In spite of the success of cell culture investigations, only a very small number of in vivo animal. and human trials have been published. The present paper reviews the studies published to date on antifungal applications of PACT and aims to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e. g., the transcriptional regulatory or signaling network, representing a blue print of the current dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions, instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes. The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do not use time series data but base our analysis on the prior information of causal interactions among genes. The major purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate concepts than it might seem at first.
Resumo:
Intraguild predation (IGP) is common in communities, yet theory suggests it should not often persist and coexistence of participating species should be rare. As parasitism can play keystone roles in interactions between competitors, and between predators and prey, here we examine the role of parasites in maintaining IGP. We used numerical exploration of population dynamic equations to determine coexistence and exclusion zones for two species engaged in IGP with shared parasitism. We demonstrate that parasitism increases the range of conditions leading to coexistence when the parasite exerts a greater deleterious effect on the 'stronger' species in terms of the combined effects of competition and predation. Such a parasite can enable an inferior competitor that is also the less predatory to persist, and may actually lead to numerical dominance of this species.