245 resultados para sex steroid receptors
Resumo:
The concept of non-discrimination has been central in the feminist challenge to gendered violence within international human rights law. This article critically explores non-discrimination and the challenge it seeks to pose to gendered violence through the work of Judith Butler. Drawing upon Butler’s critique of heteronormative sex/gender, the article utilises an understanding of gendered violence as effected by the restrictive scripts of sex/gender within heteronormativity to illustrate how the development of non-discrimination within international human rights law renders it ineffective to challenge gendered violence due to its own commitments to binarised and asymmetrical sex/gender. However, the article also seeks to encourage a reworking of non-discrimination beyond the heteronormative sex binary through employing Butler’s concept of cultural translation. Analysis via the lens of cultural translation reveals the fluidity of non-discrimination as a universal concept and offers new possibilities for feminist engagement with universal human rights.
Resumo:
Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.
Resumo:
Cellular signal transduction in response to environmental signals involves a relay of precisely regulated signal amplifying and damping events. A prototypical signaling relay involves ligands binding to cell surface receptors and triggering the activation of downstream enzymes to ultimately affect the subcellular distribution and activity of DNA-binding proteins that regulate gene expression. These so-called signal transduction cascades have dominated our view of signaling for decades. More recently evidence has accumulated that components of these cascades can be multifunctional, in effect playing a conventional role for example as a cell surface receptor for a ligand whilst also having alternative functions for example as transcriptional regulators in the nucleus. This raises new challenges for researchers. What are the cues/triggers that determine which role such proteins play? What are the trafficking pathways which regulate the spatial distribution of such proteins so that they can perform nuclear functions and under what circumstances are these alternative functions most relevant?
Resumo:
Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) gamma and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARgamma, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription-polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARgamma and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced.
Resumo:
The response of a cell to the myriad of signals that it receives is varied, and it is dependent on many different factors. The most-studied responses involve growth-factor signalling and these signalling cascades have become key targets for cancer therapy. Recent reports have indicated that growth-factor receptors and associated adaptors can accumulate in the nucleus. Are there novel functions for these proteins that might affect our understanding of their role in cancer and have implications for drug resistance?
Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors
Resumo:
Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription.
Resumo:
Worldwide, colorectal cancer has a higher incidence rate in men than in women, suggesting a protective role for sex hormones in the development of the disease. Preclinical data support a role for estrogen and its receptors in the initiation and progression of colorectal cancer and establishes that protective effects of estrogen are exerted through ERβ. Hormone replacement therapy (HRT) in postmenopausal women as well as consumption of soy reduces the incidence of colorectal cancer. In the Women's Health Initiative trial, use of HRT in postmenopausal women reduced the risk of colon cancer by 56% [95% confidence interval (CI), 0.38-0.81; P = 0.003]. A recent meta-analysis showed that in women, consumption of soy reduced the risk of colon cancer by 21% (95% CI, 0.03-0.35; P = 0.026). In this review, using the preclinical data, we translate the findings in the clinical trials and observational studies to define the role of estrogen in the prevention of colorectal cancer. We hypothesize that sometime during the tumorigenesis process ERβ expression in colonocytes is lost and the estrogen ligand, HRT, or soy products, exerts its effects through preventing this loss. Thus, in the adenoma-to-carcinoma continuum, timing of HRT is a significant determinant of the observed benefit from this intervention. We further argue that the protective effects of estrogen are limited to certain molecular subtypes. Successful development of estrogen modulators for prevention of colorectal cancer depends on identification of susceptible colorectal cancer population(s). Thus, research to better understand the estrogen pathway is fundamental for clinical delivery of these agents.
Resumo:
PURPOSE: The prognostic value of sex for esophageal cancer survival is currently unclear, and growing data suggest that hormonal influences may account for incidence disparities between men and women. Therefore, moving from the hypothesis that hormones could affect the prognosis of patients with esophageal cancer, we investigated the primary hypothesis that sex is associated with survival and the secondary hypotheses that the relationship between sex and survival depends, at least in part, on age, histology, and race/ethnicity.
PATIENTS AND METHODS: By using the SEER databases from 1973 to 2007, we identified 13,603 patients (34%) with metastatic esophageal cancer (MEC) and 26,848 patients (66%) with locoregional esophageal cancer (LEC). Cox proportional hazards model for competing risks were used for analyses.
RESULTS: In the multivariate analysis, women had longer esophageal cancer-specific survival (ECSS) than men in both MEC (hazard ratio [HR], 0.949; 95% CI, 0.905 to 0.995; P = .029) and LEC (HR, 0.920; 95% CI, 0.886 to 0.955; P < .001) cohorts. When age and histology were accounted for, there was no difference for ECSS between men and women with adenocarcinoma. In contrast, women younger than age 55 years (HR, 0.896; 95% CI, 0.792 to 1.014; P = .081) and those age 55 years or older (HR, 0.905; 95% CI, 0.862 to 0.950; P < .001) with squamous cell LEC had longer ECSS than men. In the squamous cell MEC cohort, only women younger than age 55 years had longer ECSS (HR, 0.823; 95% CI, 0.708 to 0.957; P = .011) than men.
CONCLUSION: Sex is an independent prognostic factor for patients with LEC or MEC. As secondary hypotheses, in comparison with men, women age 55 years or older with squamous cell LEC and women younger than age 55 years with squamous cell MEC have a significantly better outcome. These last two findings need further validation.
Resumo:
Background: Protease activated receptors (PAR) belong to a subfamily of G protein coupled receptors. They consist of seven transmembrane domains but are not classical receptors as their agonist is a circulating serine proteinase. This proteinase cleaves an N-terminal extracellular domain of the receptor to reveal a new N-terminal tethered ligand which binds intramolecularly, thus converting an extracellular proteolytic event into a transmembrane signal. Therefore, the cleavage and activation of PARs provide a mechanism whereby proteinases can directly influence the inflammatory response. Gingival hyperplasia or gingival enlargement is a side effect of some drugs such as cyclosporine, a potent immunosuppressant. To date, the potential role of PAR in the inflammation associated with the pathogenesis of gingival overgrowth has not been studied. Objectives: The present study was designed to determine whether proteinases derived from extracts of cyclosporine induced hyperplasia were capable of activating PAR in vitro. Methods: Cell lysates were derived from tissue obtained from gingival overgrowth of patients requiring surgical excision. Cell lines over-expressing PARs were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% foetal calf serum (FCS) in 5% CO2. The cells were treated with gingival overgrowth lysates and agonist stimulated calcium release from the cells was recorded using the Fluo-4-Direct™ Calcium Assay Kit from Invitrogen, according to manufacturer's instructions. Results: Calcium release by activated PAR on tumour cells was detected in those treated with gingival hyperplasia lysates. Samples from healthy gingival fibroblasts did not elicit this response. Conclusions: The identification of mediators of the molecular events central to the inflammatory phenotype elicited by gingival hyperplasia is important. To this end, our experiments show that in vitro, enzymes derived from overgrown gingival tissue are capable of activating PAR and thereby provide evidence for the potential role of PAR in sustaining gingival hyperplasia.