318 resultados para medical location
Resumo:
A low-profile wearable antenna suitable for integration into low-cost, disposable medical vital signs monitors is presented. Simulated and measured antenna performance was characterized on a layered human tissue phantom, representative of the thorax region of a range of human bodies. The wearable antenna has sufficient bandwidth for the 868 MHz Industrial, Scientific and Medical frequency band. Wearable radiation efficiency of up to 30 % is reported when mounted in close proximity to the novel human tissue phantom antenna test-bed at 868 MHz.
Resumo:
Data registration refers to a series of techniques for matching or bringing similar objects or datasets together into alignment. These techniques enjoy widespread use in a diverse variety of applications, such as video coding, tracking, object and face detection and recognition, surveillance and satellite imaging, medical image analysis and structure from motion. Registration methods are as numerous as their manifold uses, from pixel level and block or feature based methods to Fourier domain methods.
This book is focused on providing algorithms and image and video techniques for registration and quality performance metrics. The authors provide various assessment metrics for measuring registration quality alongside analyses of registration techniques, introducing and explaining both familiar and state-of-the-art registration methodologies used in a variety of targeted applications.
Key features:
- Provides a state-of-the-art review of image and video registration techniques, allowing readers to develop an understanding of how well the techniques perform by using specific quality assessment criteria
- Addresses a range of applications from familiar image and video processing domains to satellite and medical imaging among others, enabling readers to discover novel methodologies with utility in their own research
- Discusses quality evaluation metrics for each application domain with an interdisciplinary approach from different research perspectives
Resumo:
Introduction
Nursing and midwifery students often struggle to engage with bioscience modules because they lack confidence in their ability to study science (Fell et al., 2012). Consequently many have difficulty applying anatomical and physiological information, essential to providing safe and effective patient care (Rogers, 2014; Rogers and Sterling, 2012); therefore a need exists for nurse educators to explore different methods of delivery of these important topics to enhance current curricula (Johnston, 2010). Inspired by the reported success of creative methods to enhance the teaching and learning of anatomy in medical education (Noel, 2013; Finn and McLachlan, 2010), this pilot study engaged nursing students in anatomy through the art of felt. The project was underpinned by the principles of good practice in undergraduate education, staff-student engagement, cooperation among students, active learning, prompt feedback, time on task, high expectations and respect for diverse learning styles (Chickering and Gamson, 1987).
Method
Undergraduate student nurses from Queen’s University, Belfast, enrolled in the year one ‘Health and Wellbeing’ model were invited to participate in the project. Over a six week period the student volunteers worked in partnership with teaching staff to construct individual, unique, three dimensional felt models of the upper body. Students researched the agreed topic for each week in terms of anatomical structure, location, tissue composition and vascular access. Creativity was encouraged in relation to the colour and texture of materials used. The evaluation of the project was based on the four level model detailed by Kirkpatrick and Kirkpatrick (2006) and included both quantitative and qualitative analysis:• pre and post knowledge scores• self-rated confidence• student reflections on the application of learning to practice.
Results
At the end of the project students had created felt pieces reflective of their learning throughout the project and ‘memorable’ three dimensional mental maps of the human anatomy. Evaluation revealed not only acquisition of anatomical knowledge, but the wider benefits of actively engaging in creative learning with other students and faculty teaching staff.
The project has enabled nurse educators to assess the impact of innovative methods for delivery of these important topics.
Resumo:
The use of biosensors attached to the body for health monitoring is now readily accepted, and the merits of such systems and their potential impact on healthcare receive much attention. Wearable medical systems used in clinical applications to monitor vital signs must be comfortable to wear, yet have robust performance to ensure reliable communications links. Additionally, and vital to the success of these innovations, is that these solutions are disposable to avoid risk of patient infection and this means that they must be ultra-low cost. Antennas optimized for printing using conductive inks offer new exciting advances in making a truly disposable solution.