234 resultados para few-cycle laser pulses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense, femtosecond laser interactions with blazed grating targets are studied through experiment and particle-in-cell (PIC) simulations. The high harmonic spectrum produced by the laser is angularly dispersed by the grating leading to near-monochromatic spectra emitted at different angles, each dominated by a single harmonic and its integer-multiples. The spectrum emitted in the direction of the third-harmonic diffraction order is measured to contain distinct peaks at the 9th and 12th harmonics which agree well with two-dimensional PIC simulations using the same grating geometry. This confirms that surface smoothing effects do not dominate the far-field distributions for surface features with sizes on the order of the grating grooves whilst also showing this to be a viable method of producing near-monochromatic, short-pulsed extreme-ultraviolet radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultra-relativistic electron beam passing through a thick, high-Z solid target triggers an electromagnetic cascade, whereby a large number of high energy photons and electron-positron pairs are produced. By exploiting this physical process, we present here the first experimental evidence of the generation of ultra-short, highly collimated and ultra-relativistic positron beams following the interaction of a laser-wake field accelerated electron beam with high-Z solid targets. Clear evidence has also been obtained of the generation of GeV electron-positron jets with variable composition depending on the solid target material and thickness. The percentage of positrons in the overall leptonic beam has been observed to vary from a few per cent up to almost fifty per cent, implying a quasi-neutral electron-positron beam. We anticipate that these beams will be of direct relevance to the laboratory study of astrophysical leptonic jets and their interaction with the interstellar medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent commissioning of a X-ray free-electron laser triggered an extensive research in the area of X-ray ablation of high-Z, high-density materials. Such compounds should be used to shorten an effective attenuation length for obtaining clean ablation imprints required for the focused beam analysis. Compounds of lead (Z=82) represent the materials of first choice. In this contribution, single-shot ablation thresholds are reported for PbWO4 and PbI2 exposed to ultra-short pulses of extreme ultraviolet radiation and X-rays at FLASH and LCLS facilities, respectively. Interestingly, the threshold reaches only 0.11 J/cm(2) at 1.55 nm in lead tungstate although a value of 0.4 J/cm(2) is expected according to the wavelength dependence of an attenuation length and the threshold value determined in the XUV spectral region, i.e., 79 mJ/cm(2) at a FEL wavelength of 13.5 nm. Mechanisms of ablation processes are discussed to explain this discrepancy. Lead iodide shows at 1.55 nm significantly lower ablation threshold than tungstate although an attenuation length of the radiation is in both materials quite the same. Lower thermal and radiation stability of PbI2 is responsible for this finding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few years, attosecond techniques have been implemented for the investigation of ultrafast dynamics in molecules. The generation of isolated attosecond pulses characterized by a relatively high photon flux has opened up new possibilities in the study of molecular dynamics. In this paper, we report on experimental and theoretical results of ultrafast charge dynamics in a biochemically relevant molecule, namely, the amino acid phenylalanine. The data represent the first experimental demonstration of the generation and observation of a charge migration process in a complexmolecule, where electron dynamics precede nuclear motion. The application of attosecond technology to the investigation of electron dynamics in biologically relevant molecules represents a multidisciplinary work, which can open new research frontiers: those in which few-femtosecond and even subfemtosecond electron processes determine the fate of biomolecules. It can also open new perspectives for the development of new technologies, for example, in molecular electronics, where electron processes on an ultrafast temporal scale are essential to trigger and control the electron current on the scale of the molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study synchrotron radiation emission from laser interaction with near critical density (NCD) plasmas at intensities of 1021 W∕cm2 using three-dimensional particle-in-cell simulations. It is found that the electron dynamics depend on the laser shaping process in NCD plasmas, and thus the angular distribution of the emitted photons changes as the laser pulse evolves in space and time. The final properties of the resulting synchrotron radiation, such as its overall energy, the critical photon energy, and the radiation angular distribution, are strongly affected by the laser polarization and plasma density. By using a 420 TW∕50 fs laser pulse at the optimal plasma density (∼1nc ), about 108 photons/0.1% bandwidth are produced at multi-MeV photon energies, providing a route to ultraintense, femtosecond gamma ray pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeVm^-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio $^{2}\Sigma^+$ potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction (MRCI+Q)is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46 electron Effective Core-Potential (ECP) and even-tempered augmented polarized core-valence basis sets (aug-pCV$n$Z-PP, n= 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy De for the X$^2\Sigma^+$ state (extrapolated to the CBS limit) is 16895.12 cm$^{-1}$ (2.094 eV), which agrees within 0.1$\%$ of a revised experimental value of <16910.6 cm$^{-1}$, while the calculated re is within 0.03 pm of the experimental result.