238 resultados para Star Lindelof
Resumo:
Images of the site of the Type Ic supernova (SN) 2002ap taken before explosion were analysed previously by Smartt et al. We have uncovered new unpublished, archival pre-explosion images from the Canada-France-Hawaii Telescope (CFHT) that are vastly superior in depth and image quality. In this paper we present a further search for the progenitor star of this unusual Type Ic SN. Aligning high-resolution Hubble Space Telescope observations of the SN itself with the archival CFHT images allowed us to pinpoint the location of the progenitor site on the groundbased observations. We find that a source visible in the B- and R-band pre-explosion images close to the position of the SN is (1) not coincident with the SN position within the uncertainties of our relative astrometry and (2) is still visible similar to 4.7-yr post-explosion in late-time observations taken with the William Herschel Telescope. We therefore conclude that it is not the progenitor of SN 2002ap. We derived absolute limiting magnitudes for the progenitor of M-B >= -4.2 +/- 0.5 and M-R >= -5.1 +/- 0.5. These are the deepest limits yet placed on a Type Ic SN progenitor. We rule out all massive stars with initial masses greater than 7-8 M-circle dot (the lower mass limit for stars to undergo core collapse) that have not evolved to become Wolf-Rayet stars. This is consistent with the prediction that Type Ic SNe should result from the explosions of Wolf-Rayet stars. Comparing our luminosity limits with stellar models of single stars at appropriate metallicity (Z = 0.008) and with standard mass-loss rates, we find no model that produces a Wolf-Rayet star of low enough mass and luminosity to be classed as a viable progenitor. Models with twice the standard mass-loss rates provide possible single star progenitors but all are initially more massive than 30-40 M-circle dot. We conclude that any single star progenitor must have experienced at least twice the standard mass-loss rates, been initially more massive than 30-40 M-circle dot and exploded as a Wolf-Rayet star of final mass 10-12 M-circle dot. Alternatively a progenitor star of lower initial mass may have evolved in an interacting binary system. Mazzali et al. propose such a binary scenario for the progenitor of SN 2002ap in which a star of initial mass 15-20 M-circle dot is stripped by its binary companion, becoming a 5 M-circle dot Wolf-Rayet star prior to explosion. We constrain any possible binary companion to a main-sequence star of
Resumo:
We have studied the optical spectra of a sample of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star forming region N11. Our observations sample the central associations of LH9 and LH10, and the surrounding regions. Stellar parameters are determined using an automated fitting method ( Mokiem et al. 2005), which combines the stellar atmosphere code fastwind ( Puls et al. 2005) with the genetic algorithm based optimisation routine PIKAIA ( Charbonneau 1995). We derive an age of 7.0 +/- 1.0 and 3.0 +/- 1.0 Myr for LH9 and LH10, respectively. The age difference and relative distance of the associations are consistent with a sequential star formation scenario in which stellar activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2. From helium and hydrogen line fitting we find the hottest three of these stars to be similar to 49- 54 kK ( compared to similar to 45- 46 kK for O3 stars). Detailed determination of the helium mass fraction reveals that the masses of helium enriched dwarfs and giants derived in our spectroscopic analysis are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally enhanced mixing leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. ( 2006). For bright giants and supergiants no such mass discrepancy is found; these stars therefore appear to follow tracks of modestly or non-rotating objects. The set of programme stars was sufficiently large to establish the mass loss rates of OB stars in this Z similar to 1/2 Z(circle dot) environment sufficiently accurate to allow for a quantitative comparison with similar objects in the Galaxy and the SMC. The mass loss properties are found to be intermediate to massive stars in the Galaxy and SMC. Comparing the derived modified wind momenta D-mom as a function of luminosity with predictions for LMC metallicities by Vink et al. ( 2001) yields good agreement in the entire luminosity range that was investigated, i.e. 5.0
Resumo:
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion Hubble Space Telescope (HST) images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/- 4.3, 21.4 +/- 3.5 and 25.1 +/- 1.7 Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the brightest supergiants method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/- 3.4 Mpc. Using this distance, we estimate that the ejected nickel mass in the explosion is 0.046(-0.017)(+0.031) M-circle dot. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of m(F814W) = 24.3 +/- 0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(-2)(+3) M-circle dot. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12M(circle dot) for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd (8(-2)(+4) M circle dot) and 2005cs (9(-2)(+3) M-circle dot).
Resumo:
We present the detailed spectral analysis of a sample of M33 B-type supergiant stars, aimed at the determination of their fundamental parameters and chemical composition. The analysis is based on a grid of non-LTE metal line-blanketed model atmospheres including the effects of stellar winds and spherical extension computed with the code FASTWIND. Surface abundance ratios of C, N, and O are used to discuss the chemical evolutionary status of each individual star. The comparison of observed stellar properties with theoretical predictions of massive star evolutionary models shows good agreement within the uncertainties of the analysis. The spatial distribution of the sample allows us to investigate the existence of radial abundance gradients in the disk of M33. The comparison of stellar and H II region O abundances ( based on direct determinations of the electron temperature of the nebulae) shows good agreement. Using a simple linear radial representation, the stellar oxygen abundances result in a gradient of -0.0145 +/- 0.005 dex arcmin(-1) (or -0.06 +/- 0.02 dex kpc(-1)) up to a distance equal to similar to 1.1 times the isophotal radius of the galaxy. A more complex representation cannot be completely discarded by our stellar sample. The stellar Mg and Si abundances follow the trend displayed by O abundances, although with shallower gradients. These differences in gradient slope cannot be explained at this point. The derived abundances of the three alpha-elements yield solar metallicity in the central regions of the disk of M33. A comparison with recent planetary nebula data from Magrini and coworkers indicates that the disk of M33 has not suffered from a significant O enrichment in the last 3 Gyr.
Resumo:
We report on our attempts to locate the progenitor of the Type Ic supernova SN 2004gt in NGC 4038. We use high-resolution HST ACS images of SN 2004gt and have compared them with deep pre-explosion HST WFPC2 F336W, F439W, F555W, and F814W images. We identify the SN location on the pre-explosion frames with an accuracy of 5 mas. We show that the progenitor is below the detection thresholds of all the pre-explosion images. These detection limits are used to place luminosity and mass limits on the progenitor. The progenitor of SN 2004gt seems to be restricted to a low-luminosity high-temperature star, either a single WC star with an initial mass of > 40 M-circle dot or a low-mass star in a binary. The pre-explosion data cannot distinguish between the two scenarios.
Resumo:
The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion(1-3). Unless the companion star is another white dwarf ( in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova(4,5) is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0 - G2 star, similar to our Sun in surface temperature and luminosity ( but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.
Resumo:
For the purposes of identifying microlensing events, the POINT-AGAPE collaboration has been monitoring the Andromeda galaxy (M31) for three seasons (1999-2001) with the Wide Field Camera on the Isaac Newton Telescope. In each season, data are taken for one hour per night for roughly 60 nights during the six months that M31 is visible. The two 33 x 33 arcmin(2) fields of view straddle the central bulge, northwards and southwards. We have calculated the locations, periods and brightness of 35 414 variable stars in M31 as a by-product of the microlensing search. The variables are classified according to their period and brightness. Rough correspondences with classical types of variable star (such as Population I and II Cepheids, Miras and semiregular long-period variables) are established. The spatial distribution of Population I Cepheids is clearly associated with the spiral arms, while the central concentration of the Miras and long-period variables varies noticeably, the brighter and the shorter period Miras being much more centrally concentrated.
Resumo:
The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.
Resumo:
The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances are determined from several lines of two ionization states in both stars resulting in [Mg/Fe] = - 0.24 +/- 0.16 (+/- 0.28). This result suggests that the [alpha(Mg)/Fe] ratio in WLM may be suppressed relative to solar abundances ( also supported by differential abundances relative to similar stars in NGC 6822 and the Small Magellanic Cloud [SMC]). The absolute Mg abundance, [Mg/H] = -0.62, is high relative to what is expected from the nebulae though, where two independent spectroscopic analyses of the H II regions in WLM yield [O/H] = - 0.89. Intriguingly, the oxygen abundance determined from the O I lambda6158 feature in one WLM star is [O/H] = - 0.21 +/- 0.10 (+/- 0.05), corresponding to 5 times higher than the nebular oxygen abundance. This is the first time that a significant difference between stellar and nebular oxygen abundances has been found, and currently, there is no simple explanation for this difference. The two stars are massive supergiants with distances that clearly place them in WLM. They are young ( less than or equal to 10 Myr) and should have a similar composition to the ISM. Additionally, differential abundances suggest that the O/Fe ratio in the WLM star is consistent with similar stars in NGC 6822 and the SMC, galaxies where the average stellar oxygen abundances are in excellent agreement with the nebular results. If the stellar abundances reflect the true composition of WLM, then this galaxy lies well above the metallicity-luminosity relationship for dwarf irregular galaxies. It also suggests that WLM is more chemically evolved than currently interpreted from its color-magnitude diagram. The similarities between the stars in WLM and NGC 6822 suggest that these two galaxies may have had similar star formation histories.
Resumo:
We have carried out a survey of the Andromeda galaxy for unresolved microlensing (pixel lensing). We present a subset of four short timescale, high signal-to-noise microlensing candidates found by imposing severe selection criteria: the source flux variation exceeds the flux of an R = 21 magnitude star and the full width at half maximum timescale is less than 25 days. Remarkably, in three out of four cases, we have been able to measure or strongly constrain the Einstein crossing time of the event. One event, which lies projected on the M 31 bulge, is almost certainly due to a stellar lens in the bulge of M 31. The other three candidates can be explained either by stars in M 31 and M 32 or by MACHOs.
Resumo:
We present Gemini-N GMOS and CFHT MOS spectroscopy of Wolf-Rayet candidates in the Local Group dwarf galaxy IC 10 that were previously identified by Massey et al. and Royer et al. From the present spectroscopic survey, the WC/WN ratio for IC 10 remains unusually high, given its low metallicity, although none of the WC9 stars suspected from narrow-band imaging are confirmed. Our spectroscopy confirms 9 newly discovered Wolf-Rayet candidates from Royer et al., whilst spectral types of 14 Wolf-Rayet stars previously observed by Massey & Armandroff are refined here. In total, there are 26 spectroscopically confirmed Wolf-Rayet stars in IC 10. All but one of the fourteen WC stars are WC4-6 stars, the exception being # 10 from Massey et al., a broad-lined, apparently single WC7 star. There are a total of eleven WN stars, which are predominantly early WN3-4 stars, but include a rare WN10 star, # 8 from Royer et al. # 5 from Massey et al. is newly identified as a transition WN/C star. Consequently, the WC/WN ratio for IC10 is 14/11similar to1.3, unusually high for a metal-poor galaxy. Re-evaluating recent photometric data of Massey & Holmes, we suggest that the true WC/WN ratio may not be as low as similar to0.3. Finally, we present ground-based finding charts for all confirmed WR stars, plus HST/WFPC2 charts for twelve cases.
Resumo:
We present simultaneous and continuous observations of the Halpha, Hbeta, He I D-3, Na I D-1,D-2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2.(d)8. Two large optical flares were observed, both showing an increase in the emission of Halpha, Ca II H K, Hbeta and He I D-3 and a strong filling-in of the Na I D-1, D-2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Halpha and He I D-3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.
Resumo:
We report the discovery of a short-duration microlensing candidate in the northern field of the POINT-AGAPE pixel lensing survey toward M31. Almost certainly, the source star has been identified on Hubble Space Telescope archival images, allowing us to infer an Einstein crossing time of t(E) = 10.4 days, a maximum magnification of A(max) similar to 18, and a lens-source proper motion mu (rel) > 0.3 mu as day(-1). The event has a projected separation of 8' from the center of M31, beyond the bulk of the stellar lens population. There are three plausible identifications/locations for the lensing object: a massive compact halo object (MACHO) in either M31 or the Milky Way, or a star in the M31 disk. The most probable mass is 0.06 M-. for an M31 MACHO, 0.02 M-. for a Milky Way MACHO, and 0.2 M-. for an M31 stellar lens. While the stellar interpretation is possible, the MACHO interpretation is the most probable for halo fractions above 20%.