232 resultados para SELECTIVE AMYGDALOHIPPOCAMPECTOMY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Glucagon-like peptide-1 (GLP-1) therapies are routinely used for glycaemic control in diabetes and their emerging cardiovascular actions have been a major recent research focus. In addition to GLP-1 receptor activation, the metabolically-inactive breakdown product, GLP-1(9-36)amide, also appears to exert notable cardiovascular effects, including protection against acute cardiac ischaemia. Here, we specifically studied the influence of GLP-1(9-36)amide on chronic post-myocardial infarction (MI) remodelling, which is a major driver of heart failure progression.

METHODS: Adult female C57BL/6 J mice were subjected to permanent coronary artery ligation or sham surgery prior to continuous infusion with GLP-1(9-36)amide or vehicle control for 4 weeks.

RESULTS: Infarct size was similar between groups with no effect of GLP-1(9-36)amide on MI-induced cardiac hypertrophy, although modest reduction of in vitro phenylephrine-induced H9c2 cardiomyoblast hypertrophy was observed. Whilst echocardiographic systolic dysfunction post-MI remained unchanged, diastolic dysfunction (decreased mitral valve E/A ratio, increased E wave deceleration rate) was improved by GLP-1(9-36)amide treatment. This was associated with modulation of genes related to extracellular matrix turnover (MMP-2, MMP-9, TIMP-2), although interstitial fibrosis and pro-fibrotic gene expression were unaltered by GLP-1(9-36)amide. Cardiac macrophage infiltration was also reduced by GLP-1(9-36)amide together with pro-inflammatory cytokine expression (IL-1β, IL-6, MCP-1), whilst in vitro studies using RAW264.7 macrophages revealed global potentiation of basal pro-inflammatory and tissue protective cytokines (e.g. IL-1β, TNF-α, IL-10, Fizz1) in the presence of GLP-1(9-36)amide versus exendin-4.

CONCLUSIONS: These data suggest that GLP-1(9-36)amide confers selective protection against post-MI remodelling via preferential preservation of diastolic function, most likely due to modulation of infiltrating macrophages, indicating that this often overlooked GLP-1 breakdown product may exert significant actions in this setting which should be considered in the context of GLP-1 therapy in patients with cardiovascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a wideband equivalent circuit model for a twisted split ring frequency selective surface (FSS). Such surfaces can be used for modelling and design of polarisation sensitive surfaces such as circularly polarized selective surfaces as well as structures with asymmetric transmission. The proposed model is based extraction of equivalent circuit parameters from a single split ring (SRR) FSS and magnetic coupling from periodic eigenmode analysis of the coupled SRR. The resulting equivalent circuit model demonstrates excellent agreement with full-wave simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a design method for the realisation of circularly polarised frequency selective surfaces (CP FSS). An equivalent circuit model for a capacitive asymmetric loop FSS is proposed. For this model a set of nonlinear design equation for CP operation is obtained. Based on space mapping of the model and full-wave simulation, a fast converging design method for CP FSS synthesis is demonstrated for the first time. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new selective multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems that opportunistically modulate both a small subset of sub-carriers and their indices. Particularly, we investigate the performance enhancement in two cases of error propagation sensitive and compromised deviceto-device (D2D) communications. For the performance evaluation, we focus on analyzing the error propagation probability (EPP) introducing the exact and upper bound expressions on the detection error probability, in the presence of both imperfect and perfect detection of active multi-carrier indices. The average EPP results in closedform are generalized for various fading distribution using the moment generating function, and our numerical results clearly show that the proposed approach is desirable for reliable and energy-efficient D2D applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogas from anaerobic digestion of sewage sludge is a renewable resource with high energy content, which is formed mainly of CH4 (40-75 vol.%) and CO2 (15-60 vol.%) Other components such as water (H2O, 5-10 vol.%) and trace amounts of hydrogen sulfide and siloxanes can also be present. A CH4-rich stream can be produced by removing the CO2 and other impurities so that the upgraded bio-methane can be injected into the natural gas grid or used as a vehicle fuel. The main objective of this paper is to develop a new modeling methodology to assess the technical and economic performance of biogas upgrading processes using ionic liquids which physically absorb CO2. Three different ionic liquids, namely the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-hexyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl]imide and trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide, are considered for CO2 capture in a pressure-swing regenerative absorption process. The simulation software Aspen Plus and Aspen Process Economic Analyzer is used to account for mass and energy balances as well as equipment cost. In all cases, the biogas upgrading plant consists of a multistage compressor for biogas compression, a packed absorption column for CO2 absorption, a flash evaporator for solvent regeneration, a centrifugal pump for solvent recirculation, a pre-absorber solvent cooler and a gas turbine for electricity recovery. The evaluated processes are compared in terms of energy efficiency, capital investment and bio-methane production costs. The overall plant efficiency ranges from 71-86 % whereas the bio-methane production cost ranges from £6.26-7.76 per GJ (LHV). A sensitivity analysis is also performed to determine how several technical and economic parameters affect the bio-methane production costs. The results of this study show that the simulation methodology developed can predict plant efficiencies and production costs of large scale CO2 capture processes using ionic liquids without having to rely on gas solubility experimental data.