245 resultados para PRIMATE RETINA
Resumo:
Background
Diabetic macular oedema (DMO) is a thickening of the central retina, or the macula, and is associated with long-term visual loss in people with diabetic retinopathy (DR). Clinically significant macular oedema (CSMO) is the most severe form of DMO. Almost 30 years ago, the Early Treatment Diabetic Retinopathy Study (ETDRS) found that CSMO, diagnosed by means of stereoscopic fundus photography, leads to moderate visual loss in one of four people within three years. It also showed that grid or focal laser photocoagulation to the macula halves this risk. Recently, intravitreal injection of antiangiogenic drugs has also been used to try to improve vision in people with macular oedema due to DR.Optical coherence tomography (OCT) is based on optical reflectivity and is able to image retinal thickness and structure producing cross-sectional and three-dimensional images of the central retina. It is widely used because it provides objective and quantitative assessment of macular oedema, unlike the subjectivity of fundus biomicroscopic assessment which is routinely used by ophthalmologists instead of photography. Optical coherence tomography is also used for quantitative follow-up of the effects of treatment of CSMO.
Objectives
To determine the diagnostic accuracy of OCT for detecting DMO and CSMO, defined according to ETDRS in 1985, in patients referred to ophthalmologists after DR is detected. In the update of this review we also aimed to assess whether OCT might be considered the new reference standard for detecting DMO.
Search methods
We searched the Cochrane Database of Systematic Reviews (CDSR), the Database of Abstracts of Reviews of Effects (DARE), the Health Technology Assessment Database (HTA) and the NHS Economic Evaluation Database (NHSEED) (The Cochrane Library 2013, Issue 5), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2013), EMBASE (January 1950 to June 2013), Web of Science Conference Proceedings Citation Index - Science (CPCI-S) (January 1990 to June 2013), BIOSIS Previews (January 1969 to June 2013), MEDION and the Aggressive Research Intelligence Facility database (ARIF). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 25 June 2013. We checked bibliographies of relevant studies for additional references.
Selection Criteria
We selected studies that assessed the diagnostic accuracy of any OCT model for detecting DMO or CSMO in patients with DR who were referred to eye clinics. Diabetic macular oedema and CSMO were diagnosed by means of fundus biomicroscopy by ophthalmologists or stereophotography by ophthalmologists or other trained personnel.
Data collection and analysis
Three authors independently extracted data on study characteristics and measures of accuracy. We assessed data using random-effects hierarchical sROC meta-analysis models.
Main results
We included 10 studies (830 participants, 1387 eyes), published between 1998 and 2012. Prevalence of CSMO was 19% to 65% (median 50%) in nine studies with CSMO as the target condition. Study quality was often unclear or at high risk of bias for QUADAS 2 items, specifically regarding study population selection and the exclusion of participants with poor quality images. Applicablity was unclear in all studies since professionals referring patients and results of prior testing were not reported. There was a specific 'unit of analysis' issue because both eyes of the majority of participants were included in the analyses as if they were independent.In nine studies providing data on CSMO (759 participants, 1303 eyes), pooled sensitivity was 0.78 (95% confidence interval (CI) 0.72 to 0.83) and specificity was 0.86 (95% CI 0.76 to 0.93). The median central retinal thickness cut-off we selected for data extraction was 250 µm (range 230 µm to 300 µm). Central CSMO was the target condition in all but two studies and thus our results cannot be applied to non-central CSMO.Data from three studies reporting accuracy for detection of DMO (180 participants, 343 eyes) were not pooled. Sensitivities and specificities were about 0.80 in two studies and were both 1.00 in the third study.Since this review was conceived, the role of OCT has changed and has become a key ingredient of decision-making at all levels of ophthalmic care in this field. Moreover, disagreements between OCT and fundus examination are informative, especially false positives which are referred to as subclinical DMO and are at higher risk of developing clinical CSMO.
Authors' conclusions
Using retinal thickness thresholds lower than 300 µm and ophthalmologist's fundus assessment as reference standard, central retinal thickness measured with OCT was not sufficiently accurate to diagnose the central type of CSMO in patients with DR referred to retina clinics. However, at least OCT false positives are generally cases of subclinical DMO that cannot be detected clinically but still suffer from increased risk of disease progression. Therefore, the increasing availability of OCT devices, together with their precision and the ability to inform on retinal layer structure, now make OCT widely recognised as the new reference standard for assessment of DMO, even in some screening settings. Thus, this review will not be updated further.
Resumo:
PURPOSE: Mutations in the Prominin-1 (Prom1) gene are known to cause retinitis pigmentosa and Stargardt disease, both of which are associated with progressive photoreceptor cell death. There are no effective therapies for either disorder. The aim of this study was to investigate the mechanism of the retinal degeneration in Prom1-deficient mouse models.
METHODS: We constructed Prom1 knockout mice with two distinct genetic backgrounds of C57BL/6 and C57BL/6xCBA/NSlc, and investigated the photoreceptor degeneration by means of histology and functional tests.. In addition, we examined the effect of light on the Prom1(-/-) retina by rearing the mice in the normal light/dark cycle and completely dark conditions. Finally, we investigated if the retinoic-acid derivative Fenretinide slowed the pace of retinal degeneration in these mouse models.
RESULTS: The Prom1(-/-)-knockout mice with both backgrounds developed photoreceptor degeneration after eye opening, but the CB57/BL6-background mice developed photoreceptor cell degeneration much faster than the C57BL/6xCBA/NSlc mice, demonstrating genetic background dependency.. Interestingly, our histologic and functional examination showed that the photoreceptor cell degeneration of Prom1-knockout mice was light-dependent, and was almost completely inhibited when the mutant mice were kept in the dark. The Prom1-knockout retina showed strong downregulation of expression of the visual cycle components, Rdh12 and Abca4. Furthermore, administration of Fenretinide, which lowers the level of the toxic lipofuscin, slowed the degeneration of photoreceptor cells.
CONCLUSIONS: These findings improve our understanding of the mechanism of cell death in Prominin-1-related disease and provide evidence that fenretinide may be worth studying in human disease.
Resumo:
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.
Resumo:
The crowned sifaka (Propithecus coronatus) and Decken’s sifaka (Propithecus deckenii) are Endangered lemurs endemic to west and central Madagascar. Both have suffered habitat loss and fragmentation throughout their ranges. The goal
of this study, conducted in the Mahavavy-Kinkony Wetland Complex (MKWC) in northwestern Madagascar, was to assess the effects of historical change in the species’ habitats, and to model the potential impact of further land-use change on their habitats. The IDRISI Andes Geographical Information System and image-processing software was used for satellite-image classifiation, and the Land Change Modeler was used to compare the natural habitat of the species from 1973 to 2005, and to predict available habitat for 2050. We analyzed two forests in the MKWC occupied by P. coronatus (Antsilaiza and Anjohibe), and three forests occupied by P. deckenii (Tsiombikibo, Marofandroboka and Andohaomby). The two forests occupied by P. coronatus contracted during the period 1949–1973, but then expanded to exceed their 1949 area by 28% in 2005. However, the land change model predicted that they will contract again to match their 1949 area by 2050, and will again lose their corridor connection, meaning that the conservation gains for this species in the complex are at risk of being reversed. The three forests occupied by P. deckenii have declined in area steadily since 1949, losing 20% of their original area by 2005, and are predicted to lose a further 15% of their original area by 2050. Both species are therefore at risk of becoming even more threatened if land-use change continues within the complex. Improved conservation of the remaining forest is recommended to avoid further loss, as well as ecological restoration and reforestation to promote connectivity between the forests. A new strategy for controlling agriculture and forest use is required in order to avoid further destruction of the forest.
Resumo:
Aims/hypothesis
The receptor for AGEs (RAGE) is linked to proinflammatory pathology in a range of tissues. The objective of this study was to assess the potential modulatory role of RAGE in diabetic retinopathy.
Methods
Diabetes was induced in wild-type (WT) and Rage −/− mice (also known as Ager −/− mice) using streptozotocin while non-diabetic control mice received saline. For all groups, blood glucose, HbA1c and retinal levels of methylglyoxal (MG) were evaluated up to 24 weeks post diabetes induction. After mice were killed, retinal glia and microglial activation, vasopermeability, leucostasis and degenerative microvasculature changes were determined.
Results
Retinal expression of RAGE in WT diabetic mice was increased after 12 weeks (p < 0.01) but not after 24 weeks. Rage −/− mice showed comparable diabetes but accumulated less MG and this corresponded to enhanced activity of the MG-detoxifying enzyme glyoxalase I in their retina when compared with WT mice. Diabetic Rage −/− mice showed significantly less vasopermeability, leucostasis and microglial activation (p < 0.05–0.001). Rage −/− mice were also protected against diabetes-related retinal acellular capillary formation (p < 0.001) but not against pericyte loss.
Conclusions/interpretation Rage −/− in diabetic mice is protective against many retinopathic lesions, especially those related to innate immune responses. Inhibition of RAGE could be a therapeutic option to prevent diabetic retinopathy.
Resumo:
Purpose: Suppressor of cytokine signalling (SOCS) proteins are feedback inhibitors of the JAK/STAT pathway. SOCS3 critically controls STAT3 activation, cytokine signalling and inflammatory gene expression in macrophages and microglia. In this study, we investigated the role of SOCS3/STAT3 in myeloid cells in the initiation and progression of diabetic retinopathy (DR).
Methods: Mice with a conditional deletion of SOCS3 in myeloid cells (LysMCre-SOCS3 fl/fl) and C57BL/6J (as control) were rendered diabetic by a low-dose multiple intraperitoneal injections of Stroptozocine. Diabetes related retinal changes, including leukostasis, acellular capilliaries, and microglial activation were assessed at different stages of disease. Bone marrow derived macrophages (BMDMs) from LysMCreSOCS3 fl/fl and C57BL/6J mice were cultured in high glucose (HG) medium, and cell activation was evaluated by real-time RT-PCR.
Results: In C57BL/6J diabetic mice the expression of phosphorylated STAT3 (pSTAT3) was increased and SOCS3 was decreased in the retina. Interleukin 6 (IL-6), the main cytokine that stimulates STAT3 activation, was increased in the plamsa in diabetic mice. Although blood glucose levels and Hbac-1 were comparable between LysMCre-SOCS3fl/fl and WT mice after STZ injection, the LysMCreSOCS3 fl/fl diabetic mice developed severe retinal vasculopathy, including increased leukostasis and microglial activation at one month and enhanced acellular capillary formation at 6 months after diabetes induction.
Conclusions: our study suggests that the JAK/STAT3 pathway is involved in the initiation and progression of DR, and uncontrolled STAT3 activation results in accelerated DR progression. Targeting the STAT3 pathway may be a novel approach for the management of DR.
Resumo:
AIMS: To assess quantitatively variations in the extent of capillary basement membrane (BM) thickening between different retinal layers and within arterial and venous environments during diabetes.
METHODS: One year after induction of experimental (streptozotocin) diabetes in rats, six diabetic animals together with six age-matched control animals were sacrificed and the retinas fixed for transmission electron microscopy (TEM). Blocks of retina straddling the major arteries and veins in the central retinal were dissected out, embedded in resin, and sectioned. Capillaries in close proximity to arteries or veins were designated as residing in either an arterial (AE) or a venous (VE) environment respectively, and the retinal layer in which each capillary was located was also noted. The thickness of the BM was then measured on an image analyser based two dimensional morphometric analysis system.
RESULTS: In both diabetics and controls the AE capillaries had consistently thicker BMs than the VE capillaries. The BMs of both AE and VE capillaries from diabetics were thicker than those of capillaries in the corresponding retinal layer from the normal rats (p < or = 0.005). Also, in normal AE and VE capillaries and diabetic AE capillaries the BM in the nerve fibre layer (NFL) was thicker than that in either the inner (IPL) or outer (OPL) plexiform layers (p < or = 0.001). However, in diabetic VE capillaries the BMs of capillaries in the NFL were thicker than those of capillaries in the IPL (p < or = 0.05) which, in turn, had thicker BMs than capillaries in the OPL (p < or = 0.005).
CONCLUSIONS: The variation in the extent of capillary BM thickening between different retinal layers within AE and VE environments may be related to differences in levels of oxygen tension and oxidative stress in the retina around arteries compared with that around veins.
Resumo:
Purpose: Recent evidence suggests that neuroglial dysfunction and degeneration contributes to the etiology and progression of diabetic retinopathy. Advanced lipoxidation end products (ALEs) have been implicated in the pathology of various diseases, including diabetes and several neurodegenerative disorders. The purpose of the present study was to investigate the possible link between the accumulation of ALEs and neuroretinal changes in diabetic retinopathy.
Methods: Retinal sections obtained from diabetic rats and age-matched controls were processed for immunohistochemistry using antibodies against several well defined ALEs. In vitro experiments were also performed using a human Muller (Moorfields/Institute of Ophthalmology-Muller 1 [ MIO-M1]) glia cell line. Western blot analysis was used to measure the accumulation of the acrolein-derived ALE adduct N epsilon-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) in Muller cells preincubated with FDP-lysine-modified human serum albumin (FDP-lysine-HSA). Responses of Muller cells to FDP-lysine accumulation were investigated by analyzing changes in the protein expression of heme oxygenase-1 (HO-1), glial fibrillary acidic protein (GFAP), and the inwardly rectifying potassium channel Kir4.1. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF alpha) were determined by reverse transcriptase PCR (RT-PCR). Apoptotic cell death was evaluated by fluorescence-activated cell sorting (FACS) analysis after staining with fluorescein isothiocyanate (FITC)-labeled annexin V and propidium iodide.
Results: No significant differences in the levels of malondialdehyde-, 4-hydroxy-2-nonenal-, and 4-hydroxyhexenal-derived ALEs were evident between control and diabetic retinas after 4 months of diabetes. By contrast, FDP-lysine immunoreactivity was markedly increased in the Muller glia of diabetic rats. Time-course studies revealed that FDP-lysine initially accumulated within Muller glial end feet after only a few months of diabetes and thereafter spread distally throughout their inner radial processes. Exposure of human Muller glia to FDP-lysine-HSA led to a concentration-dependent accumulation of FDP-lysine-modified proteins across a broad molecular mass range. FDP-lysine accumulation was associated with the induction of HO-1, no change in GFAP, a decrease in protein levels of the potassium channel subunit Kir4.1, and upregulation of transcripts for VEGF, IL-6, and TNF-alpha. Incubation of Muller glia with FDP-lysine-HSA also caused apoptosis at high concentrations.
Conclusions: Collectively, these data strongly suggest that FDP-lysine accumulation could be a major factor contributing to the Muller glial abnormalities occurring in the early stages of diabetic retinopathy.
Resumo:
PURPOSE. Raman spectroscopy is an effective probe of advanced glycation end products (AGEs) in Bruch's membrane. However, because it is the outermost layer of the retina, this extracellular matrix is difficult to analyze in vivo with current technology. The sclera shares many compositional characteristics with Bruch's membrane, but it is much easier to access for in vivo Raman analysis. This study investigated whether sclera could act as a surrogate tissue for Raman-based investigation of pathogenic AGEs in Bruch's membrane.
METHODS. Human sclera and Bruch's membrane were dissected from postmortem eyes (n = 67) across a wide age range (33-92 years) and were probed by Raman spectroscopy. The biochemical composition, AGEs, and their age-related trends were determined from data reduction of the Raman spectra and compared for the two tissues.
RESULTS. Raman microscopy demonstrated that Bruch's membrane and sclera are composed of a similar range of biomolecules but with distinct relative quantities, such as in the heme/collagen and the elastin/collagen ratios. Both tissues accumulated AGEs, and these correlated with chronological age (R(2) = 0.824 and R(2) = 0.717 for sclera and Bruch's membrane, respectively). The sclera accumulated AGE adducts at a lower rate than Bruch's membrane, and the models of overall age-related changes exhibited a lower rate (one-fourth that of Bruch's membrane) but a significant increase with age (P <0.05).
CONCLUSIONS. The results suggest that the sclera is a viable surrogate marker for estimating AGE accumulation in Bruch's membrane and for reliably predicting chronological age. These findings also suggest that sclera could be a useful target tissue for future patient-based, Raman spectroscopy studies. (Invest Ophthalmol Vis Sci 2011;52:1593-1598) DOI:10.1167/iovs.10-6554
Resumo:
Purpose: Although L-type Ca2+ channels are known to play a key role in the myogenic reactivity of retinal arterial vessels, the involvement of other types of voltage-gated Ca2+ channels in this process remains unknown. In the present study we have investigated the contribution of T-type Ca2+ channels to myogenic signalling in arterioles of the rat retinal microcirculation.
Methods: Confocal immunolabelling of wholemount preparations was used to investigate the localisation of CaV3.1-3 channels in retinal arteriolar smooth muscle cells. T-type currents and the contribution of T-type channels to myogenic signalling were assessed by whole-cell patch-clamp recording and pressure myography of isolated retinal arteriole segments.
Results: Strong immunolabelling for CaV3.1 was observed on the plasma membrane of retinal arteriolar smooth muscle cells. In contrast, no expression of CaV3.2 or CaV3.3 could be detected in retinal arterioles, although these channels were present on glial cell end feet surrounding the vessels and retinal ganglion cells, respectively. TTA-A2 sensitive T-type currents were recorded in retinal arteriolar myocytes with biophysical properties distinct from those of the L-type currents present in these cells. Inhibition of T-type channels using TTA-A2 or ML-218 dilated isolated, myogenically active, retinal arterioles.
Conclusions: CaV3.1 T-type Ca2+ channels are functionally expressed on arteriolar smooth muscle cells of retinal arterioles and play an important role in myogenic signalling in these vessels. The work has important implications concerning our understanding of the mechanisms controlling blood flow autoregulation in the retina and its disruption during ocular disease.
Resumo:
Purpose: The canonical Wnt signaling is activated by retinal injury. Under disease conditions, the Wnt mediates inflammatory responses. Inflammation has been detected in age-related macular degeneration (AMD) retinas and Ccl2-/-/Cx3cr1-/- (DKO) mice with or without rd8 background, a model with progressive AMD-like lesions including focal photoreceptor/RPE degeneration and A2E accumulation. We evaluated the effects of Wnt-β-catenin activation and an antibody against LRP6, the co-receptor of Wnt on these two models.
Methods: anti-LRP6 antibody (2F1, 1 μl of 5 μg/μL) was intravitreally injected into the right eyes in 3 separate experiments (DKOrd8, N=35; DKO, N=10). The left eyes were injected with mouse IgG as controls. Fundoscopy was taken before injection and sequentially monthly after injection. Two months after injection, light-adapted ERG responses were recorded; then the eyes were harvested for histopathology, the determination of retinal A2E, and molecular analysis. The microarray of ocular mRNA of 92 Wnt genes was compared between the treated and the control eyes. The phosphorylated types of LRP6 and β-catenin and endogenous forms of the proteins were assayed by Western blotting.
Results: For DKOrd8 mice, the fundus showed a slower progression or alleviation of retinal lesions in the right eyes as compared to the left eyes. Among 35 pairs of eyes, 26 (74.3%) were improved, 7 (20%) stayed the same and 2 (5.7%) remained progressing. Histology confirmed the clinical observation. Light-adapted ERG of the treated eyes exhibited larger amplitudes compared to control eyes (n=6), with greater improvements under UV light stimulus. There was a significantly lower A2E in the treated eyes compared to controls. Microarray of 92 Wnt genes expression pattern was similar in both eyes. Western blotting indicated local administration of 2F1 antibody to suppress the activation of Wnt pathway in the retina. For DKO mice, the treatment improved ERG but less effect on RPE degeneration.
Conclusions: The canonical Wnt signaling plays a role in the focal retina lesion of both DKOrd8 and DKO mice; and intravitreal anti-LRP6 antibody might be neuroprotective via deactivation of canonical Wnt pathway.
Resumo:
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.
Resumo:
AIMS/HYPOTHESIS: Diabetic retinopathy is a serious complication of diabetes mellitus and can lead to blindness. A genetic component, in addition to traditional risk factors, has been well described although strong genetic factors have not yet been identified. Here, we aimed to identify novel genetic risk factors for sight-threatening diabetic retinopathy using a genome-wide association study.
METHODS: Retinopathy was assessed in white Australians with type 2 diabetes mellitus. Genome-wide association analysis was conducted for comparison of cases of sight-threatening diabetic retinopathy (n = 336) with diabetic controls with no retinopathy (n = 508). Top ranking single nucleotide polymorphisms were typed in a type 2 diabetes replication cohort, a type 1 diabetes cohort and an Indian type 2 cohort. A mouse model of proliferative retinopathy was used to assess differential expression of the nearby candidate gene GRB2 by immunohistochemistry and quantitative western blot.
RESULTS: The top ranked variant was rs3805931 with p = 2.66 × 10(-7), but no association was found in the replication cohort. Only rs9896052 (p = 6.55 × 10(-5)) was associated with sight-threatening diabetic retinopathy in both the type 2 (p = 0.035) and the type 1 (p = 0.041) replication cohorts, as well as in the Indian cohort (p = 0.016). The study-wide meta-analysis reached genome-wide significance (p = 4.15 × 10(-8)). The GRB2 gene is located downstream of this variant and a mouse model of retinopathy showed increased GRB2 expression in the retina.
CONCLUSIONS/INTERPRETATION: Genetic variation near GRB2 on chromosome 17q25.1 is associated with sight-threatening diabetic retinopathy. Several genes in this region are promising candidates and in particular GRB2 is upregulated during retinal stress and neovascularisation.
Resumo:
Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.
Resumo:
PURPOSE: It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats.
METHODS: Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS).
RESULTS: Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors.
CONCLUSIONS: The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.