277 resultados para MUSCLE BIOPSY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NADPH oxidase (Nox4) produces reactive oxygen species (ROS) that are important for vascular smooth muscle cell (SMC) behavior, but the potential impact of Nox4 in stem cell differentiation is unknown. When mouse embryonic stem (ES) cells were plated on collagen IV-coated dishes/flasks, a panel of SMC-specific genes was significantly and consistently upregulated. Nox4 expression was markedly correlated with such a gene induction as confirmed by real-time PCR, immunofluorescence, and Western blot analysis. Overexpression of Nox4 specifically resulted in increased SMC marker production, whereas knockdown of Nox4 induced a decrease. Furthermore, SMC-specific transcription factors, including serum response factor (SRF) and myocardin were activated by Nox4 gene expression. Moreover, Nox4 was demonstrated to drive SMC differentiation through generation of H(2)O(2). Confocal microscopy analysis indicates that SRF was translocated into the nucleus during SMC differentiation in which SRF was phosphorylated. Additionally, autosecreted transforming growth factor (TGF)-beta(1) activated Nox4 and promoted SMC differentiation. Interestingly, cell lines generated from stem cells by Nox4 transfection and G418 selection displayed a characteristic of mature SMCs, including expression of SMC markers and cells with contractile function. Thus we demonstrate for the first time that Nox4 is crucial for SMC differentiation from ES cells, and enforced Nox4 expression can maintain differentiation status and functional features of stem cell-derived SMCs, highlighting its impact on vessel formation in vivo and vascular tissue engineering in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells have the ability to differentiate into a variety of cells to replace dead cells or to repair tissue. Recently, accumulating evidence indicates that mechanical forces, cytokines and other factors can influence stem cell differentiation into vascular smooth muscle cells (SMCs). In developmental process, SMCs originate from several sources, which show a great heterogenicity in different vessel walls. In adult vessels, SMCs display a less proliferative nature, but are altered in response to risk factors for atherosclerosis. Traditional view on SMC origins in atherosclerotic lesions is challenged by the recent findings that stem cells and smooth muscle progenitors contribute to the development of atherosclerotic lesions. Vascular progenitor cells circulating in human blood and the presence of adventitia in animals are recent discoveries, but the source of these cells is still unknown. The present review gives an update on the progress of stem cell and SMC research in atherosclerosis, and discusses possible mechanisms of stem/progenitor cell differentiation that contribute to the disease process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. 

Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. 

Key Results: KCNQ subtypes 1-5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20M) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. 

Conclusions and Implications: These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim-To develop an expert system model for the diagnosis of fine needle aspiration cytology (FNAC) of the breast.

Methods-Knowledge and uncertainty were represented in the form of a Bayesian belief network which permitted the combination of diagnostic evidence in a cumulative manner and provided a final probability for the possible diagnostic outcomes. The network comprised 10 cytological features (evidence nodes), each independently linked to the diagnosis (decision node) by a conditional probability matrix. The system was designed to be interactive in that the cytopathologist entered evidence into the network in the form of likelihood ratios for the outcomes at each evidence node.

Results-The efficiency of the network was tested on a series of 40 breast FNAC specimens. The highest diagnostic probability provided by the network agreed with the cytopathologists' diagnosis in 100% of cases for the assessment of discrete, benign, and malignant aspirates. A typical probably benign cases were given probabilities in favour of a benign diagnosis. Suspicious cases tended to have similar probabilities for both diagnostic outcomes and so, correctly, could not be assigned as benign or malignant. A closer examination of cumulative belief graphs for the diagnostic sequence of each case provided insight into the diagnostic process, and quantitative data which improved the identification of suspicious cases.

Conclusion-The further development of such a system will have three important roles in breast cytodiagnosis: (1) to aid the cytologist in making a more consistent and objective diagnosis; (2) to provide a teaching tool on breast cytological diagnosis for the non-expert; and (3) it is the first stage in the development of a system capable of automated diagnosis through the use of expert system machine vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A binding protein displaying broad-spectrum cross-reactivity within the sulfonamide group was used in conjunction with a sulfonamide specific sensor chip and a surface plasmon resonance biosensor to develop a rapid broad spectrum screening assay for sulfonamides in porcine muscle. Results for 40 samples were available in just over 5 h after the completion of a simple sample preparation protocol. Twenty sulfonamide compounds were detected. Acetylated metabolites were not recognised by the binding protein. Limit of detection (mean-three times standard deviation value when n = 20) was calculated to be 16.9 ng g(-1) in tissue samples. Intra-assay precision (n = 10) was calculated at 4.3 %CV for a sample spiked at 50 ng g(-1) with sulfamethazine, 3.6 %CV for a sample spiked at 100 ng g(-1) with sulfamethazine, 7.2 %CV for a sample spiked at 50 ng g(-1) with sulfadiazine and 3.1 %CV for a sample spiked at 100 ng g-1 with sulfadiazine. Inter-assay precision (n = 3) was calculated at 9.7 %CV for a sample spiked at 50 ng g-1 with sulfamethazine, 3.8 %CV for a sample spiked at 100 ng g(-1) with sulfamethazine, 3.5 %CV for a sample spiked at 50 ng g(-1) with sulfadiazine and 2.8 %CV for a sample spiked at 100 ng g(-1) with sulfadiazine. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fruit and vegetable (FV) intake, which is often low in older people, may be associated with improved muscle strength and physical function. However, there is a shortage of intervention trial evidence to support this. The current study examined the effect of increased FV consumption on measures of muscle strength and physical function among healthy, free-living older adults. A randomized controlled intervention study was undertaken. Eighty-three participants aged 65-85 years, habitually consuming =2 portions of FV/day, were randomised to continue their normal diet (=2 portions/day), or to consume =5 portions of FV/day for 16 weeks. FV were delivered to all participants each week, free of charge. Compliance was monitored at baseline, 6, 12 and 16 weeks by diet history and by measuring biomarkers of micronutrient status. Grip strength was measured by a hand-held dynamometer, while lower-extremity physical function was assessed by performance-based measures. Eighty-two participants completed the intervention. The 5 portions/day group showed greater change in daily FV consumption compared to the 2 portions/day group (P?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken to further characterise the fine structural changes occurring in the retinal circulation in early diabetes. The eyes of eight alloxan/streptozotocin and three spontaneously diabetic dogs were examined by trypsin digest and electron microscopy after durations of diabetes of between 1 and 7 years. Basement membrane (BM) thickening in the retinal capillaries was the only obvious fine structural change identified during the first 3 years of diabetes and was established within 1 year of induction. Widespread pericyte loss was noted after 4 years of diabetes and was paralleled by loss of smooth muscle (SM) cells, in the retinal arterioles. SM cell loss was most obvious in the smaller arterioles of the central retina. No microaneurysms were noted in the experimental diabetic dogs with up to 5 years' duration of diabetes but were widespread in a spontaneously diabetic animal at 7 years. This study has shown that SM cell loss, a hitherto unrecognised feature of diabetic microangiopathy, accompanies pericyte loss in the retinal circulation of diabetic dogs.