346 resultados para Homocysteine Levels
Resumo:
The reasons why animal populations decline in response to anthropogenic noise are still poorly understood. To understand how populations are affected by noise, we must understand how individuals are affected by noise. By modifying the acoustic environment experimentally, we studied the potential relationship between noise levels and both spatial and singing behaviour in the European robin (Erithacus rubecula). We found that with increasing noise levels, males were more likely to move away from the noise source and changed their singing behaviour. Our results provide the first experimental evidence in a free ranging species, that not merely the presence of noise causes changes in behaviour and distribution, but that the level of noise pollution plays a crucial role as well. Our results have important implications for estimating the impact of infrastructure which differs in the level of noise produced. Thus, governmental planning bodies should not only consider the physical effect on the landscape when assessing the impact of new infrastructure, but also the noise levels emitted, which may reduce the loss of suitable habitats available for animals. © 2012 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
At least 10-15% of patients with reflux symptoms have a normal endoscopy and physiological levels of acid reflux on pH monitoring. Such patients with 50% or more of symptoms associated with acid reflux episodes have "a positive symptom index" (SI), and it has been proposed that this defines the "sensitive oesophagus".
Resumo:
Coronary heart disease is the commonest cause of death in Northern Ireland, but few data exist on the incidence of risk factors in young adult students and non-students.
Resumo:
Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict paclitaxel responses in women presenting with high-grade serous EOC.
Resumo:
BACKGROUND: The mitotic arrest deficiency protein 2 (MAD2) is a key component of the mitotic spindle assembly checkpoint, monitoring accurate chromosomal alignment at the metaphase plate before mitosis. MAD2 also has a function in cellular senescence and in a cell’s response to microtubule inhibitory (MI) chemotherapy exemplified by paclitaxel.
METHODS: Using an siRNA approach, the impact of MAD2 down-regulation on cellular senescence and paclitaxel responsiveness was investigated. The endpoints of senescence, cell viability, migration, cytokine expression, cell cycle analysis and anaphase bridge scoring were carried out using standard approaches.
RESULTS: We show that MAD2 down-regulation induces premature senescence in the MCF7 breast epithelial cancer cell line. These MAD2-depleted (MAD2k) cells are also significantly replicative incompetent but retain viability. Moreover, they show significantly higher levels of anaphase bridges and polyploidy compared to controls. In addition, these cells secrete higher levels of IL-6 and IL-8
representing key components of the senescence-associated secretory phenotype (SASP) with the ability to impact on neighbouring cells. In support of this, MAD2kcells show enhanced migratory ability. At 72 h after paclitaxel, MAD2kcells show a significant further induction of senescence compared with paclitaxel naive controls. In addition, there are significantly more viable cells in the MAD2k MCF7 cell line after paclitaxel reflecting the observed increase in senescence.
CONCLUSION: Considering that paclitaxel targets actively dividing cells, these senescent cells will evade cytotoxic kill. In conclusion, compromised MAD2 levels induce a population of senescent cells resistant to paclitaxel.
Resumo:
Neprilysin (NEP), also known as membrane metalloendopeptidase (MME), is considered amongst the most important ß-amyloid (Aß)-degrading enzymes with regard to prevention of Alzheimer's disease (AD) pathology. Variation in the NEP gene (MME) has been suggested as a risk factor for AD. We conducted a genetic association study of 7MME SNPs - rs1836914, rs989692, rs9827586, rs6797911, rs61760379, rs3736187, rs701109 - with respect to AD risk in a cohort of 1057 probable and confirmed AD cases and 424 age-matched non-demented controls from the United Kingdom, Italy and Sweden. We also examined the association of these MME SNPs with NEP protein level and enzyme activity, and on biochemical measures of Aß accumulation in frontal cortex - levels of total soluble Aß, oligomeric Aß(1-42), and guanidine-extractable (insoluble) Aß - in a sub-group of AD and control cases with post-mortem brain tissue. On multivariate logistic regression analysis one of the MME variants (rs6797911) was associated with AD risk (P = 0.00052, Odds Ratio (O.R. = 1.40, 95% confidence interval (1.16-1.70)). None of the SNPs had any association with Aß levels; however, rs9827586 was significantly associated with NEP protein level (p=0.014) and enzyme activity (p=0.006). Association was also found between rs701109 and NEP protein level (p=0.026) and a marginally non-significant association was found for rs989692 (p=0.055). These data suggest that MME variation may be associated with AD risk but we have not found evidence that this is mediated through modification of NEP protein level or activity.
Resumo:
We investigated the phenotype of cells involved in leukostasis in the early stages of streptozotocin-induced diabetes in mice by direct observation and by adoptive transfer of calcein-AM-labeled bone marrow-derived leukocytes from syngeneic mice. Retinal whole mounts, confocal microscopy, and flow cytometry ex vivo and scanning laser ophthalmoscopy in vivo were used. Leukostasis in vivo and ex vivo in retinal capillaries was increased after 2 weeks of diabetes (Hb A(1c), 14.2 ± 1.2) when either donor or recipient mice were diabetic. Maximum leukostasis occurred when both donor and recipient were diabetic. CD11b(+), but not Gr1(+), cells were preferentially entrapped in retinal vessels (fivefold increase compared with nondiabetic mice). In diabetic mice, circulating CD11b(+) cells expressed high levels of CCR5 (P = 0.04), whereas spleen (P = 0.0001) and retinal (P = 0.05) cells expressed increased levels of the fractalkine chemokine receptor. Rosuvastatin treatment prevented leukostasis when both recipient and donor were treated but not when donor mice only were treated. This effect was blocked by treatment with mevalonate. We conclude that leukostasis in early diabetic retinopathy involves activated CCR5(+)CD11b(+) myeloid cells (presumed monocytes). However, leukostasis also requires diabetes-induced changes in the endothelium, because statin therapy prevented leukostasis only when recipient mice were treated. The up-regulation of the HMG-CoA reductase pathway in the endothelium is the major metabolic dysregulation promoting leukostasis.