237 resultados para Eeg-alpha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferon-alpha (IFN-alpha) therapy is commonly used in the treatment of neoplastic and autoimmune diseases, including cutaneous T cell lymphoma (CTCL). However, the IFN-alpha response is unpredictable, and the IFN-alpha cell targets and pathways are only partially understood. To delineate the molecular mechanisms of IFN-alpha activity, gene expression profiling was performed in a time-course experiment of both IFN-alpha sensitive and IFN-alpha-resistant variants of a CTCL cell line. These experiments revealed that IFN-alpha is responsible for the regulation of hundreds of genes in both variants and predominantly involves genes implicated in signal transduction, cell cycle control, apoptosis, and transcription regulation. Specifically, the IFN-alpha response of tumoral T cells is due to a combination of induction of apoptosis in which TNFSF10 and HSXIAPAF1 may play an important role and cell cycle arrest achieved by downregulation of CDK4 and CCNG2 and upregulation of CDKN2C and tumor suppressor genes (TSGs). Resistance to IFN-alpha appears to be associated with failure to induce IRF1 and IRF7 and deregulation of the apoptotic signals of HSXIAPAF1, TRADD, BAD, and BNIP3. Additionally, cell cycle progression is heralded by upregulation of CDC25A and CDC42. A critical role of NF-kappaB in promoting cell survival in IFN-alpha-resistant cells is indicated by the upregulation of RELB and LTB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptor protein (AP) complexes bind to transmembrane proteins destined for internalization and to membrane lipids, so linking cargo to the accessory internalization machinery. This machinery interacts with the appendage domains of APs, which have platform and beta-sandwich subdomains, forming the binding surfaces for interacting proteins. Proteins that interact with the subdomains do so via short motifs, usually found in regions of low structural complexity of the interacting proteins. So far, up to four motifs have been identified that bind to and partially compete for at least two sites on each of the appendage domains of the AP2 complex. Motifs in individual accessory proteins, their sequential arrangement into motif domains, and partial competition for binding sites on the appendage domains coordinate the formation of endocytic complexes in a temporal and spatial manner. In this work, we examine the dominant interaction sequence in amphiphysin, a synapse-enriched accessory protein, which generates membrane curvature and recruits the scission protein dynamin to the necks of coated pits, for the platform subdomain of the alpha-appendage. The motif domain of amphiphysin1 contains one copy of each of a DX(F/W) and FXDXF motif. We find that the FXDXF motif is the main determinant for the high affinity interaction with the alpha-adaptin appendage. We describe the optimal sequence of the FXDXF motif using thermodynamic and structural data and show how sequence variation controls the affinities of these motifs for the alpha-appendage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on alpha-appendages, called 'top' and 'side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered alpha(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling.

METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided.

RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts.

CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Human alpha defensins are a family of neutrophil-derived antimicrobial peptides also known as human neutrophil peptides (HNPs). The defensin family of peptides are characterised by six invariant cysteine residues forming three disulphide bridges. The formation of the correct disulphide pairs complicates the synthesis of full length human alpha defensin and limits its therapeutic potential as an antimicrobial peptide. Objectives: The aim of this study was to determine whether truncated alpha defensins displayed antimicrobial activity against a range of micro-organisms including oral pathogens. Methods: Engineered peptides were synthesised by solid-phase methods using standard Fmoc chemistry. Antibacterial assays were performed using a previously described ultra sensitive radial diffusion method. A total of five engineered defensin peptides and full length alpha defensin were tested for their sensitivity against eight micro-organisms, including Gram negative bacteria, Gram positive bacteria and fungal pathogens Results: Antimicrobial activity was identified as clear zones around peptide-containing wells. Zone diameters were used to calculate minimum inhibitory concentrations (MICs) for each peptide. There was considerable variability in the susceptibility of the micro-organisms to the truncated analogues. Bacillus subtilis and Enterococcus faecalis were sensitive to the majority of the engineered peptides whereas Staphylococcus aureus, Escherichia coli and Candida albicans displayed resistance (defined as an MIC of greater than 250 ug/ml) to the truncated defensins. Of the five engineered peptides synthesised, the 2-aminobenzoic acid (Abz)-containing analogues based on the C-terminal sequence of alpha defensin displayed MIC values closest to that of the full length defensin in 5 out of 8 micro-organisms studied. Conclusion: This study demonstrates that truncated alpha defensins display variable antimicrobial activity against a range of micro-organisms, including oral pathogens. The generation of truncated defensins without disulphide bridges simplifies their synthesis and increases their therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Care of critically ill patients in intensive care units (ICUs) often requires potentially invasive or uncomfortable procedures, such as mechanical ventilation (MV). Sedation can alleviate pain and discomfort, provide protection from stressful or harmful events, prevent anxiety and promote sleep. Various sedative agents are available for use in ICUs. In the UK, the most commonly used sedatives are propofol (Diprivan(®), AstraZeneca), benzodiazepines [e.g. midazolam (Hypnovel(®), Roche) and lorazepam (Ativan(®), Pfizer)] and alpha-2 adrenergic receptor agonists [e.g. dexmedetomidine (Dexdor(®), Orion Corporation) and clonidine (Catapres(®), Boehringer Ingelheim)]. Sedative agents vary in onset/duration of effects and in their side effects. The pattern of sedation of alpha-2 agonists is quite different from that of other sedatives in that patients can be aroused readily and their cognitive performance on psychometric tests is usually preserved. Moreover, respiratory depression is less frequent after alpha-2 agonists than after other sedative agents.

OBJECTIVES: To conduct a systematic review to evaluate the comparative effects of alpha-2 agonists (dexmedetomidine and clonidine) and propofol or benzodiazepines (midazolam and lorazepam) in mechanically ventilated adults admitted to ICUs.

DATA SOURCES: We searched major electronic databases (e.g. MEDLINE without revisions, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE and Cochrane Central Register of Controlled Trials) from 1999 to 2014.

METHODS: Evidence was considered from randomised controlled trials (RCTs) comparing dexmedetomidine with clonidine or dexmedetomidine or clonidine with propofol or benzodiazepines such as midazolam, lorazepam and diazepam (Diazemuls(®), Actavis UK Limited). Primary outcomes included mortality, duration of MV, length of ICU stay and adverse events. One reviewer extracted data and assessed the risk of bias of included trials. A second reviewer cross-checked all the data extracted. Random-effects meta-analyses were used for data synthesis.

RESULTS: Eighteen RCTs (2489 adult patients) were included. One trial at unclear risk of bias compared dexmedetomidine with clonidine and found that target sedation was achieved in a higher number of patients treated with dexmedetomidine with lesser need for additional sedation. The remaining 17 trials compared dexmedetomidine with propofol or benzodiazepines (midazolam or lorazepam). Trials varied considerably with regard to clinical population, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded outcome assessors. Compared with propofol or benzodiazepines (midazolam or lorazepam), dexmedetomidine had no significant effects on mortality [risk ratio (RR) 1.03, 95% confidence interval (CI) 0.85 to 1.24, I (2) = 0%; p = 0.78]. Length of ICU stay (mean difference -1.26 days, 95% CI -1.96 to -0.55 days, I (2) = 31%; p = 0.0004) and time to extubation (mean difference -1.85 days, 95% CI -2.61 to -1.09 days, I (2) = 0%; p < 0.00001) were significantly shorter among patients who received dexmedetomidine. No difference in time to target sedation range was observed between sedative interventions (I (2) = 0%; p = 0.14). Dexmedetomidine was associated with a higher risk of bradycardia (RR 1.88, 95% CI 1.28 to 2.77, I (2) = 46%; p = 0.001).

LIMITATIONS: Trials varied considerably with regard to participants, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded assessors.

CONCLUSIONS: Evidence on the use of clonidine in ICUs is very limited. Dexmedetomidine may be effective in reducing ICU length of stay and time to extubation in critically ill ICU patients. Risk of bradycardia but not of overall mortality is higher among patients treated with dexmedetomidine. Well-designed RCTs are needed to assess the use of clonidine in ICUs and identify subgroups of patients that are more likely to benefit from the use of dexmedetomidine.

STUDY REGISTRATION: This study is registered as PROSPERO CRD42014014101.

FUNDING: The National Institute for Health Research Health Technology Assessment programme. The Health Services Research Unit is core funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates.